• Title/Summary/Keyword: contact pressures

Search Result 143, Processing Time 0.029 seconds

THE MECHATRONIC VEHICLE CORNER OF DARMSTADT UNIVERSITY OF TECHNOLOGY-INTERACTION AND COOPERATION Of A SENSOR TIRE, NEW LOW-ENERGY DISC BRAKE AND SMART WHEEL SUSPENSION

  • Bert Breuer;Michael Barz;Karlheinz Bill;Steffen Gruber;Martin Semsch;Thomas Strothjohann;Chungyang Xie
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.63-70
    • /
    • 2002
  • Future on-board vehicle control systems can be further improved through new types of mechatronic systems. In particular, these systems' capacities for interaction enhance safety, comfort and economic viability. The Automotive Engineering Department (fzd) of darmstadt University of Technology is engaged in research of the mechatronic vehicle corner, which consists of three subsystems: sensor tire, electrically actuated wheel brake and smart suspension. By intercommunication of these three systems, the brake controller receives direct, fast and permanent information about dynamic events in the tire contact area provided by the tire sensor as valuable control input. This allows to control operation conditions of each wheel brake. The information provided by the tire sensor for example help to distinguish between staightline driving and cornering as well as to determine $\mu$-split conditions. In conjunction with current information of dynamic wheel loads, tire pressures and friction tyre/road, the ideal brake force distribution can be achieved. Alike through integration of adaptive suspension bushings, elastokinematic behaviour and wheel positions can be adapted to manoeuver-oriented requirements.

Influence of Oxyfluorination on Properties of Polyacrylonitrile (PAN)- Based Carbon Fibers

  • Lim, In-Seub;Yoo, Seung-Hwa;Park, Il-Nam;Lee, Young-Seak
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • In this study, the oxyfluorination of PAN-based carbon fibers was undertaken at room temperature using fluorine-oxygen mixtures, and the influence of oxyfluorination on properties was investigated. The surface characteristics of the modified fiber were determined by using X-ray photoelectron spectroscopy (XPS) and dynamic contact angle analyzer. The oxyfluorination of carbon fibers was one of the more effective methods to increase surface wettability by the formation of semicovalent C-F bond and C-O bond depending on reaction conditions. When oxygen mole fraction is increased from 0.5 to 0.9, it is probable that attached fluorine atoms at the surface of the fibers reacted with other components. As increased oxyfluorination time and decreased its pressures, semi-covalent peak is increased at 0.5 of oxygen mole fraction. The total surface free energy of oxyfluorinated carbon fibers decreased with increasing oxygen mole fraction over 0.5. These results indicate that the surface of carbon fibers became much more hydrophilic after the short oxyfluorination. The surface free energy of oxyfluorinated carbon fibers progressively decreased after 10 min treatment. The polar components of surface free energies were however, significantly higher for all oxyfluorinated samples than that for the untreated carbon fiber.

  • PDF

A Study on the Development of Soft Stamping Printing Equipment (소프트 스탬핑 프린팅 장비 개발에 관한 연구)

  • Jang, Nam-Eun;Kim, Nam-Kuk;Lee, Youn-Seop;Kim, Youg-Tae;Shin, Kwan-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.259-262
    • /
    • 2009
  • Several universities in Korea are beginning studies related to soft stamping processes but since the studies are done with manual works thus systematic tests can't be performed due to difficulties in producing reproducible and repeatable fine patterns. Therefore, the phenomenon of destruction of the pattern forms of elastic polymers occurred during working because of inconsistent printing pressures and pinting time and there have been difficulties in maintaining flatness or producing uniform and fault-free fine structures in pinting large areas and also, there have been difficulties in multi-layered processes as patterns were changed by contacts in registering and errors in alignments. The purpose of development of this technology is to improve the process of soft lithography so that contacts between PDMS stamps and metal coated substrates in order to develop a stamp printing device that can not only shorten but also optimize processes, secure reproducibility and repeatability and is advantageous in printing large areas. Also, using this technology, this author is to develop equipment technologies and applied technologies for nano grade pattern printing processes with new concepts based on fine contact printing processes in order to apply them to diverse nano pattering processes.

  • PDF

Tribological characteristics of sputtered MoS$_2$films with Magnetron Sputtering Method in High Vacuum (Magnetron Sputtering법에 의해 증착한 MoS$_2$ 박막의 고진공하에서의 트라이볼로지적 특성)

  • 안찬욱;김석삼;이상로
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.406-413
    • /
    • 2000
  • The friction and wear behaviors of Magnetron Sputtered MoS$_2$films were investigated by using a pin on disk type tester which was designed and manufactured for this experiment. The experiment was conducted by using silicon nitride (Si$_3$N$_4$) as a pin material and Magnetron Sputtered MoS$_2$on bearing steel (STB2) as a disk material, under operating conditions that include different surface roughness (Polishing specimen, Grinding specimen)(2types), linear sliding velocities in the range of 22, 44, 66mm/sec (3types), normal loads vary from 9.8N, 19.6N, 29.4N(3types), corresponding to contact pressures of 1.9∼2.7GPa and atmospheric conditions of high vacuum( 1.3${\times}$10$\^$-4/Pa), medium vacuum( 1.3${\times}$10$\^$-l/Pa), ambient air(10$\^$5/Pa)(3types). We investigated fracture mechanism in magnetron sputtered MoS$_2$films with Magnetron Sputtering method in each experiment.

  • PDF

Development of the Post-Operative Bra for Breast Augmentation Patients (유방 확대수술 환자용 수술 직후 보정용 브래지어 개발)

  • Yi, Kyong-Hwa;Choi, Hyun Ok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.2
    • /
    • pp.215-227
    • /
    • 2019
  • This study develops a post-operative brassiere suitable for changed breast shapes and the characteristics of breast augmentation patients. Six subjects who experienced breast augmentation surgery with a cup size of C or D cup participated in the wearing test. We conducted a wearing test to evaluate the superiority of the developed post-operative bra. As a result, the evaluation of the developed bra was excellent in the outer cup, outer circle of breast front gore, shoulder straps and the wing pressures. Second the satisfaction of the developed brassiere was high in the front center part, and in the evaluation of wearing satisfaction of the subjects; in addition, the degree of close contact with the cup, flexibility, touch, and overall evaluation. The satisfaction of the developed bra was also higher than a commercial bra. Third, the developed bra proved superior in the adaptability test, such as prevention of breast shaking, prevention of bra and breast separation during movements, and ease of body movement.

Simultaneous Removal of SOx and NOx in Flue Gas of Oxy-fuel Combustion by Direct Contact Condenser (직접접촉식 응축기를 통한 가압순산소 연소 배가스 내 SOx, NOx 동시저감 연구)

  • Choi, Solbi;Mock, Chinsung;Yang, Won;Ryu, Changkook;Choi, Seuk-Cheon
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • Pressurized oxy-fuel combustion is a promising technology for $CO_2$ capture with a benefit of improving power plant efficiency compared with atmospheric oxy-fuel combustion. Prior to $CO_2$ compression in this process, a flue gas condenser (FGC) is used to remove $H_2O$ while recovering the latent heat. At the same time, the FGC has a potential for high-efficiency removal of $SO_x$ and $NO_x$ by exploiting their good solubility in water. In this study, experiments were carried out in a lab-scale, direct contact FGC under different pressures varying between 1 and 20 bar to evaluate the removal efficiency of $SO_2$ and $NO_x$ for individual gases and their mixture. In the tests for individual gases, 20% and 76% of $NO_x$ was removed at 1 bar and 10 bar, respectively. Even higher removal efficiencies were achieved for $SO_2$, and also these were maintained for longer as the pressure increased. In the tests for $SO_2$ and $NO_x$ mixture, the removal efficiency of $NO_x$ increased from 13% at 1 bar to 56% at 20 bar because of higher solubility at elevated pressures. $SO_2$ in the mixture was initially dissolved almost completely and then increased by 1,219 ppm at 1 bar and by 165 ppm at 20 bar. Overall, the removal efficiency of $SO_2$ and $NO_x$ was increased at elevated pressures, but it was lower in the mixture compared with individual gases at identical conditions because of a lower pH and associated chemical reactions in water.

A Study on the Development of Unified Ball Valve and Polyethylene-Steel Pipe Via Virtual Manufacturing and Experimental Approach (가상생산 및 실험을 통한 폴리에틸렌관과 금속관 일체형 볼 밸브의 개발에 관한 연구)

  • Suh, Yeong-Sung;Yoo, Je-Hyuk;Ji, Min-Wuk;Song, Jeong-Hyun;Lee, Jae-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • In order to reduce the number of installation processes and the cost, a unified ball valve and polyethylene-steel pipe is proposed and tested. An integrated design approach is carried out such that a virtual manufacturing based on finite-element analysis is first performed in order to examine contact conditions under exaggerated temperature variations (${\Delta}T\;=\;60^{\circ}C$ and $-50^{\circ}C$ for summer and winter, respectively). From the final design configuration, it was predicted that the maximum contact pressures are 71 and 8.1 MPa for summer and winter, respectively, at relatively larger contact surface. Based on this observation, a prototype model is fabricated to go through an actual leakage test. The prototype pipe passed a hydrostatic strength test successfully, showing no leakage at even much higher (54 MPa) than the operational pressure (0.25 MPa).

Effects of air-abrasion pressure on the resin bond strength to zirconia: a combined cyclic loading and thermocycling aging study

  • Al-Shehri, Eman Z.;Al-Zain, Afnan O.;Sabrah, Alaa H.;Al-Angari, Sarah S.;Dehailan, Laila Al;Eckert, George J.;Ozcan, Mutlu;Platt, Jeffrey A.;Bottino, Marco C.
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.206-215
    • /
    • 2017
  • Objectives: To determine the combined effect of fatigue cyclic loading and thermocycling (CLTC) on the shear bond strength (SBS) of a resin cement to zirconia surfaces that were previously air-abraded with aluminum oxide ($Al_2O_3$) particles at different pressures. Materials and Methods: Seventy-two cuboid zirconia specimens were prepared and randomly assigned to 3 groups according to the air-abrasion pressures (1, 2, and 2.8 bar), and each group was further divided into 2 groups depending on aging parameters (n = 12). Panavia F 2.0 was placed on pre-conditioned zirconia surfaces, and SBS testing was performed either after 24 hours or 10,000 fatigue cycles (cyclic loading) and 5,000 thermocycles. Non-contact profilometry was used to measure surface roughness. Failure modes were evaluated under optical and scanning electron microscopy. The data were analyzed using 2-way analysis of variance and ${\chi}^2$ tests (${\alpha}=0.05$). Results: The 2.8 bar group showed significantly higher surface roughness compared to the 1 bar group (p < 0.05). The interaction between pressure and time/cycling was not significant on SBS, and pressure did not have a significant effect either. SBS was significantly higher (p = 0.006) for 24 hours storage compared to CLTC. The 2 bar-CLTC group presented significantly higher percentage of pre-test failure during fatigue compared to the other groups. Mixed-failure mode was more frequent than adhesive failure. Conclusions: CLTC significantly decreased the SBS values regardless of the air-abrasion pressure used.

Photocatalytic Properties of TiO2 Thin Films Prepared by RF Sputtering (RF Sputtering법으로 제조된 TiO2 박막의 광촉매 특성)

  • Jeong, Min-ho;Jin, Duk-yong;Hayashi, Y.;Choi, Dae-kue
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.185-190
    • /
    • 2003
  • Titanium dioxide films were prepared by RF sputtering method on glass for various oxygen partial pressures at power 270 W. The crystal structure, photocatalytic property and the hydrophilicity of $TiO_2$thin film the deposition conditions were investigated. Crystallized anatase phase was observed in $TiO_2$film deposited at the ratio of oxygen partial pressure 10% and 20% for 2 hrs. As the increase of deposition time, the grain size and void size of $TiO_2$film have increased and also $V_2$films have been good crystallinity. The ultraviolet-visible light absorption of $TiO_2$films was increased with increasing of deposition time and occured chiefly at the wavelength between 280 and 340 nm. The absorption band was shifted to a longer wave length as deposition time increased. Water contact angle on the X$TiO_2$film of anatase structure was decreased with increasing ultraviolet illumination time and became lower than $11^{\circ}$ from $83^{\circ}$. When hydrophilic $TiO_2$film changed by enough ultraviolet illumination was stored in the dark, the film surface gradually turned to hydrophobic state.

Properties of CIGS thin film developed with evaporation system (진공증발원 시스템을 이용한 CIGS 박막의 특성평가에 관한 연구)

  • Kim, Eundo;Jeong, Ye-Sul;Jung, Da Woon;Eom, Gi Seog;Hwang, Do Weon;Cho, Seong Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.85.1-85.1
    • /
    • 2010
  • $Cu(In,Ga)Se_2$ (CIGS) thin film solar cell is currently 19.5% higher efficiency and developing a large area technology. The structure of CIGS solar cell that make five unit layers as back contact, light absorption, buffer, front transparent conducting electrode and antireflection to make them sequentially forming. Materials and various compositions of thin film unit which also manufacture a variety method used by the physical and chemical method for CIGS solar cell. The construction and performance test of evaporator for CIGS thin film solar cell has been done. The vapor pressures were changed by using vapor flux meter. The vapor pressure were copper (Cu) $2.1{\times}10^{-7}{\sim}3.0{\times}10^{-7}$ Torr, indium (In) $8.0{\times}10^{-7}{\sim}9.0{\times}10^{-7}$ Torr, gallium (Ga) $1.4{\times}10^{-7}{\sim}2.8{\times}10^{-7}$ Torr, and selenium (Se) $2.1{\times}10^{-6}{\sim}3.2{\times}10^{-6}$ Torr, respectively. The characteristics of the CIGS thin film was investigated by using X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and photoluminescence (PL) spectroscopy using a He-Ne laser. In PL spectrum, temperature dependencies of PL spectra were measured at 1137 nm wavelength.

  • PDF