• 제목/요약/키워드: contact length

검색결과 755건 처리시간 0.105초

Pulse TIG welding: Process, Automation and Control

  • Baghel, P.K.;Nagesh, D.S.
    • Journal of Welding and Joining
    • /
    • 제35권1호
    • /
    • pp.43-48
    • /
    • 2017
  • Pulse TIG (Tungsten Inert Gas) welding is often considered the most difficult of all the welding processes commonly used in industry. Because the welder must maintain a short arc length, great care and skill are required to prevent contact between the electrode and the workpiece. Pulse TIG welding is most commonly used to weld thin sections of stainless steel, non-ferrous metals such as aluminum, magnesium and copper alloys. It is significantly slower than most other welding techniques and comparatively more complex and difficult to master as it requires greater welder dexterity than MIG or stick welding. The problems associated with manual TIG welding includes undercutting, tungsten inclusions, porosity, Heat affected zone cracks and also the adverse effect on health of welding gun operator due to amount of tungsten fumes produced during the welding process. This brings the necessity of automation. Hence, In this paper an attempt has been made to build a customerized setup of Pulse TIG welding based on through review of Pulse TIG welding parameters. The cost associated for making automated TIG is found to be low as compared to SPM (Special Purpose machines) available in the market.

Electrical Properties of Tungsten Oxide Interfacial Layer for Silicon Solar Cells

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.196.2-196.2
    • /
    • 2015
  • There are various issues fabricating the successful and efficient solar cell structures. One of the most important issues is band alignment technique. The solar cells make the carrier in their active region over the p-n junction. Then, electrons and holes diffuse by minority carrier diffusion length. After they reach the edge of solar cells, there exist large energy barrier unless the good electrode are chosen. Many various conductor with different work functions can be selected to solve this energy barrier problem to efficiently extract carriers. Tungsten oxide has large band gap known as approximately 3.4 eV, and usually this material shows n-type property with reported work function of 6.65 eV. They are extremely high work function and trap level by oxygen vacancy cause them to become the hole extraction layer for optical devices like solar cells. In this study, we deposited tungsten oxide thin films by sputtering technique with various sputtering conditions. Their electrical contact properties were characterized with transmission line model pattern. The structure of tungsten oxide thin films were measured by x-ray diffraction. With x-ray photoelectron spectroscopy, the content of oxygen was investigated, and their defect states were examined by spectroscopic ellipsometry, UV-Vis spectrophotometer, and photoluminescence measurements.

  • PDF

Emission Properties of Selectively Grown Carbon Nanotubes

  • Han, Jae-Hee;Kim, Do-Yoon;Berdinsky, Alexander S.;Yoo, Ji-Beom;Park, Chong-Yun;Choi, Jin-Ju;Jung, Tae-Won;Han, In-Taek;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.459-461
    • /
    • 2004
  • Field-emission (FE) characteristics of different photolithographically patterned carbon nanotubes (CNTs) films have been studied. The total FE current is the highest value [2.8 mA (${\sim}$106 mA/$cm^2$) at 7.5 V/${\mu}m$] in patterned CNTs film with the window size of 60 ${\mu}m$ ${\sim}$ 60 ${\mu}m$ and the spacing of 120 ${\mu}m$. It was found that the total widow area is more important factor for the total FE current than the total window length. The contact resistance between CNTs and substrate would be a crucial factor for detachment of CNTs from the substrate.

  • PDF

The Gait Analysis of Hemiplegic Patients After Stroke I. Spatio-Temporal Parameters, Pelvic Anterior Tilting and Ground Reaction-Vertical Force (뇌졸중으로 인한 편마비환자의 보행분석 I. 시간-거리변수, 골반경사각 및 지면반발력 -수직력 중심)

  • Kwon Young-Sil;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • 제10권1호
    • /
    • pp.127-138
    • /
    • 1998
  • This study was carried out tn invstigate and compare biomechanical characteristics during free speed gait in hemiplegic patients after stroke who took therapeutic exercise by analyzing kinematic and kinetic data in the sagital plane and electromyographic data. Six patients($41\~69$ years old) and age-matched six volunteers in good health(51-61 years old) wire studied. The patients were sorted into two groups, depending on their self-speed of walking : fast speed group(3 patients) and slow speed group(3 patients). The results were as fellows. : 1. In spatio-temparal parameters, affected and unaffected side of fast group showed symetry but blew group showed asymetry of single limb support, opposite foot contact and stance phase (p<0.05). Compared with normal group, patient group showed slower velocity, shoter stride length and longer double limb support (p<0.05). 2. In the pelvic anterior tilt, patient group showed lower valued than normal group. It. In the ground reaction force-vertical force, fast group showed similar double peak gragh compared with normal group, butvslow group showed lower values without double peak (p<0.05).

  • PDF

Thermo-viscoplastic finite element analysis of orthogonal metal cutting considered tool edge radius (공구끝단반경이 고려된 2차원 금속절삭에 대한 열-점소성 유한요소해석)

  • Kim, Kug-Weon;Lee, Woo-Young;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제22권1호
    • /
    • pp.1-15
    • /
    • 1998
  • In this paper, thermo-viscoplastic finite element analysis of the effect of tool edge radius on cutting process are performed. The thermo-viscoplastic cutting model is capable of dealing with free chip geometry and chip-tool contact length. The coupling with thermal effects is also considered. Orthogonal cutting experiments are performed for 0.2% carbon steel with tools having 3 different edge radii and the tool forces are measured. The experimental results are discussed in comparison with the results of the FEM analysis. From the study, we confirm that this cutting model can well be applied to the cutting process considered the tool edge radius and that a major causes of the "size effect" is the tool edge radius. With numerical analysis, the effects of the tool edge radius on the stress distributions in workpiece, the temperature distributions in workpiece and tool, and the chip shape are investigated.estigated.

The Employees' Perception of the Effectiveness of Team System at University Hospitals in Korea (대학병원의 팀 운영특성에 따른 효과성 인식에 관한 연구)

  • 서영준;김연숙;강소영
    • Health Policy and Management
    • /
    • 제11권3호
    • /
    • pp.1-30
    • /
    • 2001
  • This study was conducted to evaluate the effectiveness of team system at university hospitals in Korea. Data were collected from administrative and medical support workers at 4 university hospitals through the self-administered questionnaires and analyzed using frequency analysis, t-test, and oneway ANOVA. The results of this study are as follows. First, teams with higher team management characteristics show higher level of quality of work life and performance effectiveness. Second, teams which consist of members with variety background and skills show higher level of quality of work life and performance effectiveness. Third, team which have the higher autonomy, technology variety, job significance, and feedback show higher team effectiveness. Fourth, team which have team leaders with higher leadership score show higher level of quality of work life and performance effectiveness. Fifth, there are differences in team effectiveness in terms of sicio- demographic variables such as average age, position, and tenure of team members, length of team system, and team size. Sixth, the job autonomy of team members and the leadership of team managers have significant effects on the quality of work life variables. Seventh, the leadership of team leaders, job autonomy of members, and individual contact between team managers and members have significant effects on the team performance variables. In conclusion, in order to increase the effectiveness of team system in university hospitals, it is required to consider the characteristics of team management, diversity of team members, the autonomy of team members, the leadership of team manager, and the socio-demographic factors of team members.

  • PDF

Critical Heat Flux Enhancement Mechanism on a Surface with Nano-Structures (나노 구조가 형성된 열전달 표면에서의 임계 열유속 증진 메커니즘)

  • Kim, Dong Eok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제38권7호
    • /
    • pp.619-624
    • /
    • 2014
  • The critical heat flux (CHF) on a heat transfer surface with nanostructures is known to be significantly better than that on flat surfaces. Several physical mechanisms have been proposed to explain this phenomenon. However, almost all studies conducted so far have been qualitative, and a generalized theory has not yet been established. In this study, we developed a quantitative mechanism for CHF enhancement on a surface with nanostructures, based on vapor recoil and surface adhesion forces. We focused on the increase in the length of the triple contact line owing to the formation of nanostructures and the adhesion force between them and the liquid.

A study on the force control of MR cylinder with built-in valves (밸브 내장형 MR 실린더를 이용한 힘 제어에 관한 연구)

  • Song J.Y.;Ahn K.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1018-1023
    • /
    • 2005
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is suggested and fabricated for fluid control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has ${\varphi}30mm{\times}300mm\;and\;{\varphi}28.5mm{\times}120mm$ in face size, respectively and 0.8mm in gap length. Through experiments, it was found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. The differential pressure of 0.47MPa and contact force of 320N were obtained with the input current of 1.5A. The rising time of force was 1.1s in step response of a manipulator using the MR cylinder. The effectiveness of the MR cylinder was also demonstrated through the force control.

  • PDF

A Study on the Change of Mechanical Properties due to the Temperature Effect for the Braking Disc (철도차량용 제동디스크의 온도 변화 따른 재질의 특성 변화에 관한 연구)

  • Kim Jae-Hoon;Choi Kyung-Jin;Lee Chan-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.398-403
    • /
    • 2005
  • This study investigates the change of the temperature and mechanical properties of the braking disk for the railway vehicle. The average temperature is measured about $100^{\circ}C$ and the maximum temperature is measured over $200^{\circ}C$ by non-contact sensor from Seoul to Chun-an. In the $20^{\circ}C-300^{\circ}C$, the 0.2% offset yield strengths of the disk (GC25-30 material) are a little down to the reference value, but the linear relation of tensile test result is not find from the linear change of temperature. However, JIC values have the inverse proportion to the temperature, and the JIC value at $200^{\circ}C$ decrease 30.55% from the JIC. value of the room temperature. This result means that the crack length on the braking disk is rapidly increase at $200^{\circ}C$.

  • PDF

Experimental Study of Pattern Emboss Forming using an Electromagnetic Force (전자기력을 이용한 압인 패턴 성형의 실험적 연구)

  • An, W.J.;Noh, H.G.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • 제23권6호
    • /
    • pp.363-368
    • /
    • 2014
  • Electromagnetic forming(EMF) is one of the high-speed forming methods, and has been used to deform metal sheets. The advantages of electromagnetic forming are reduced wrinkling due to non-contact characteristic and fine formability because of the high speed impact. In the current study, we suggest the application of electromagnetic forming to emboss pattern shapes using electromagnetic forces with only one forming coil and one punch. The high impact of the sheet at speeds of 100~300m/s produces significant coining pressure. In the current paper, electromagnetic forming was applied to Al 1100-O sheets; with thickness of 1.27mm and an area of $40mm{\times}40mm$. Using a single spiral coil, totally different types of patterns were created. Four different patterns were successfully produced on the aluminum sheet. The length and depth of the patterns were measured by three-dimensional scanning. Comparisons to the die shape showed good agreement. The test results confirm that emboss pattern forming by EMF using a single die can be used to replace the costly conventional method.