• Title/Summary/Keyword: contact interface

Search Result 992, Processing Time 0.032 seconds

Influences of Process Conditions on the Surface Expansion and Contact Pressure in Backward Can Extrusion of Al Alloys (알루미늄 합금을 이용한 후방압출에 의한 캔 성형시 성형 조건이 표면확장과 접촉 압력에 미치는 영향)

  • Min, K.H.;Seo, J.M.;Koo, H.S.;Vishara, R.J.;Tak, S.H.;Lee, I.C.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.521-529
    • /
    • 2007
  • This paper is concerned with the analysis on the surface expansion of AA 2024 and AA 1100 aluminum alloys in backward extrusion process. Due to heavy surface expansion appeared usually in the backward can extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the surface expansion is analyzed especially under various process conditions. The main goal of this study is to investigate the influence of degree of reduction in height, geometries of punch nose, friction and hardening characteristics of different aluminum alloys on the material flow and thus on the surface expansion on the working material. Two different materials are selected for investigation as model materials and they are AA 2024 and AA 1100 aluminum alloys. The geometrical parameters employed in analysis include punch corner radius and punch nose angle. The geometry of punch follows basically the recommendation of ICFG and some variations of punch geometry are adopted to obtain quantitative information on the effect of geometrical parameters on material flow. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward can extrusion process under different geometrical, material, and interface conditions. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including pressure distributions along the interface between workpiece and punch, comparison of surface expansion between two model materials, geometrical and interfacial parametric effects on surface expansion, and load-stroke relationships.

Modeling on the Condensation of a Stable Steam Jet Discharging into a Quenching Tank (응축탱크로 방출되는 안정된 증기제트 응축모델)

  • 김환열;하광순;배윤영;박종균;최상민
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.349-356
    • /
    • 2001
  • Phenomenon of direct contact condensation (DCC) heat transfer between steam and water is characterized by the transport of heat and mass through a moving steam/water interface. Since the DCC heat transfer provides some advantageous features in the viewpoint of enhanced heat transfer, it is widely applied to the diversified industries. This study proposes a simple condensation model on the stable steam jets discharging into a quenching tank with subcooled water from a single horizontal pipe for the prediction of the steam jet shapes. The model was derived from the mass, momentum and energy equations as well as thermal balance equation with condensing characteristics at the steam/water interface for the axi-symmetric coordinates. The extremely large heat transfer rate at the steam/water interface was reflected in the effective thermal conductivity estimated from the previous experimental results. The results were compared with the experimental ones. The predicted steam jet shape(i. e. radius and length) by the model was increasing as the steam mass flux and the pool temperature were increasing, which was similar to the trend observed in the experiment.

  • PDF

Pt/Al Reaction Mechanism in the FeRAM Device Integration (FeRAM 소자 제작 중에 발생하는 Pt/Al 반응 기구)

  • Cho Kyoung-Won;Hong Tae-Whan;Kweon Soon-Yong;Choi Si-Kyong
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.688-695
    • /
    • 2004
  • The capacitor contact barrier(CCB) layers have been introduced in the FeRAM integration to prevent the Pt/Al reaction during the back-end processes. Therefore, the interdiffusion and intermetallic formation in $Pt(1500{\AA})/Al(3000{\AA})$ film stacks were investigated over the annealing temperature range of $100\sim500^{\circ}C$. The interdiffusion in Pt/Al interface started at $300^{\circ}C$ and the stack was completlely intermixed after annealing over $400^{\circ}C$ in nitrogen ambient for 1 hour. Both XRD and SBM analyses revealed that the Pt/Al interdiffusion formed a single phase of $RtAl_2$ intermetallic compound. On the other hand, in the presence of TiN($1000{\AA}$) barrier layer at the Pt/Al interface, the intermetallic formation was completely suppressed even after the annealing at $500^{\circ}C$. These were in good agreement with the predicted effect of the TiN diffusion barrier layer. But the conventional TiN CCB layer could not perfectly block the Pt/Al reaction during the back-end processes of the FeRAM integration with the maximum annealing temperature of $420^{\circ}C$. The difference in the TiN barrier properties could be explained by the voids generated on the Pt electrode surface during the integration. The voids were acted as the starting point of the Pt/Al reaction in real FeRAM structure.

A HISTOLOGIC COMPARATIVE STUDY OF LOADED AND UNLOADED TITANIUM IMPLANTS (LOADED IMPLANT와 UNLOADED IMPLANT의 조직학적 비교 연구)

  • Kim, Yung-Soo;Ko, Jea-Seung;Hwang, Sung-Myung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.1-16
    • /
    • 1991
  • In order to see the possible effect of the functional load-bearing after osseointegration of the titanium root form implant in dog a histologic study was conducted. One side of lower jaw was surgically prepared edentulousness and titanium implants were inserted. Some implants were functionally loaded through fixed detachable prosthesis and some are isolated and unloaded. The dog was sacrificed four months later and bone sections with implants were processed for histologic evaluation and the results were as follows ; (1) The bone to implant interface after four months of load bearing presented no mobility and no marginal bone loss radiographically and histologically. (2) The interface zone between compact bone and implant revealed a direct bone to implant contact and in some areas marrow tissue contacts were examined at the light microscopic level. (3) At the ultrastructural level the interface of surrounding compact bone matrix and implant, three types of superficial layers were found ; one with moderate electron dense amorphous granular substance layer, other with high electron dense fine granular substance layer, and another type of amorphous granular substance covered with high electron dense line of minute granules. (4) The osteoblasts in the marrow tissue neighboring implants and osteocytes in compact bone showed typical normal characteristics and in the marrow tissues some of lymphocytes and mast cells were observed. (5) The abscence of abnormal tissue reactions at a cellular level indicates a high degree of biocompatibility for the experimental titanium implant and basically no difference was found between functionally loaded and unloaded implants.

  • PDF

Effects of Hin Recombinase Dimer Interface Mutants on DNA Binding and Recombination

  • Lee, Hee-Jung;Lee, Sun-Young;Lee, Hee-Jin;Lim, Heon-Man
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.27-31
    • /
    • 2001
  • Previous biochemical assays and a structural model indicated that the dimer interface of the Hin recombinase is composed of the two a-helices. To elucidate the structure and function of the helix, amino acids in the N-terminal end of the helix, where the two helices contact most, were randomized, and inversion-incompetent mutants were selected. To investigate why the mutants lost their inversion activities, the DNA binding, hix-pairing, invertasome formation, and DNA cleavage activities were assayed using in vivo and in vitro methodologies. Results indicated that the mutants could be divided into 4 classes based on their DNA binding activity. We proposed that the a-helices might place a DNA binding motif of Hin properly to the minor DNA groove of the recombination site. All the mutants except the non-binders were able to perform hix-pairing and invertasome formation, suggesting that the dimer interface is not involved in the process of hix-pairing or invertasome formation. The inversion-incompetent phenotype of the binders was caused by the inability of mutants to perform the DNA cleavage activity. The less binders exhibited wild-type level of hix-pairing activity because the hix-pairing activity overcomes the DNA binding defect of the less binders. This phenotype of the less binders suggests that the binding domains of Hin could mediate Hin-Hin interaction during hix-pairing..

  • PDF

Interface Structures of Ag-Si Contacts with Thermal Properties of Frits in Ag Pastes

  • Choi, Seung-Gon;Kim, Dong-Sun;Lee, Jung-Ki;Kim, Hyung-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.390-396
    • /
    • 2012
  • Ag pastes added to Bi-oxide frits have been applied to the electrode material of Si solar cells. It has been reported that frits induce contacts between the Ag electrodes and the Si wafer after firing. During firing, the control of interfaces among Ag, the glass layer, and Si is one of the key factors for improving cell performance. Specifically, the thermo-physical properties of frits considerably influence Ag-Si contact. Therefore, the thermal properties of frits should be carefully controlled to enhance the efficiency of cells. In this study, the interface structures among Ag electrodes, glass layers, and recrystallites on an $n^+$ emitter were carefully analyzed with the thermal properties of lead-free frits. First, a cross-section of the area between the Ag electrodes and the Si wafer was studied in order to understand the interface structures in light of the thermal properties of the frits. The depth and area of the pits formed in the Si wafer were quantitatively calculated with the thermal properties of frits. The area of the glass layers between the Ag electrodes and Si, and the distribution of recrystallites on the $n^+$ emitter, were measured from a macroscopic point of view with the characteristics of the frits. Our studies suggest that the thermophysical properties should be controlled for the optimal performance of Si solar cells; our studies also show why cell performance deteriorated due to the high viscosity of frits in Ag pastes.

The influence of systemically administered oxytocin on the implant-bone interface area: an experimental study in the rabbit

  • Cho, Sung-Am;Park, Sang-Hun;Cho, Jin-Hyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.505-511
    • /
    • 2014
  • PURPOSE. The purpose of this study was to assess the effect of systemically administered oxytocin (OT) on the implant-bone interface by using histomorphometric analysis and the removal torque test. MATERIALS AND METHODS. A total of 10 adult, New Zealand white, female rabbits were used in this experiment. We placed 2 implants (CSM; CSM Implant, Daegu, South Korea) in each distal femoral metaphysis on both the right and left sides; the implants on both sides were placed 10 mm apart. In each rabbit, 1 implant was prepared for histomorphometric analysis and the other 3 were prepared for the removal torque test (RT). The animals received intramuscular injections of either saline (control group; 0.15 M NaCl) or OT (experimental group; $200{\mu}g/rabbit$). The injections were initiated on Day 3 following the implant surgery and were continued for 4 subsequent weeks; the injections were administered twice per day (at a 12-h interval), for 2 days per week. RESULTS. While no statistically significant difference was observed between the two groups (P=.787), the control group had stronger removal torque values. The serum OT concentration (ELISA value) was higher in the OT-treated group, although no statistically significant difference was found. Further, the histomorphometric parameter (bone-to-implant contact [BIC], inter-thread bone, and peri-implant bone) values were higher in the experimental group, but the differences were not significant. CONCLUSION. We postulate that OT supplementation via intramuscular injection weakly contributes to the bone response at the implant-bone interface in rabbits. Therefore, higher concentrations or more frequent administration of OT may be required for a greater bone response to the implant. Further studies analyzing these aspects are needed.

Catalytic Activity Tests in Gas-Liquid Interface over Cu-ZnO/Al2O3 Catalyst for High Pressure Water-Gas-Shift Reaction (고압 WGS 반응을 위한 Cu-ZnO/Al2O3 촉매상에서 기-액 계면 촉매 반응 특성 연구)

  • Kim, Se-Hun;Park, No-Kuk;Lee, Tae-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.905-912
    • /
    • 2011
  • In this study, the novel concept catalytic reactor was designed for water-gas shift reaction (WGS) under high pressure. The novel concept catalytic reactor was composed of an autoclave, the catalyst, and liquid water. Cu-ZnO/$Al_2O_3$ as the low temperature shift catalyst was used for WGS reaction. WGS in the novel concept catalytic reactor was carried out at the ranges of 150~$250^{\circ}C$ and 30~50 atm. The liquid water was filled at the bottom of the autoclave catalytic reactor and the catalyst of pellet type was located at the gas-liquid water interface. It was concluded that WGS reaction occurred over the surface of catalysts partially wetted with liquid water. The conversion of CO for WGS was also controlled with changing content of Cu and ZnO used as the catalytic active components. Meanwhile, the catalyst of honey comb type coated with Cu-ZnO/$Al_2O_3$ was used in order to increase the contact area between wet-surface of catalyst and the reactants of gas phase. It was confirmed from these experiments that $H_2$/CO ratio of the simulated coal gas increased from 0.5 to 0.8 by WGS at gas-liquid water interface over the wet surface of honey comb type catalyst at $250^{\circ}C$ and 50 atm.

Intelligent Control of a Virtual Walking Machine for Virtual Reality Interface (가상현실 대화용 가상걸음 장치의 지능제어)

  • Yoon, Jung-Won;Park, Jang-Woo;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.926-934
    • /
    • 2006
  • This paper proposes intelligent control of a virtual walking machine that can generate infinite floor for various surfaces and can provide proprioceptive feedback of walking to a user. This machine allows users to participate in a life-like walking experience in virtual environments with various terrains. The controller of the machine is implemented hierarchically, at low-level for robust actuator control, at mid-level fur platform control to compensate the external forces by foot contact, and at high-level control for generating walking trajectory. The high level controller is suggested to generate continuous walking on an infinite floor for various terrains. For the high level control, each independent platform follows a man foot during the swing phase, while the other platform moves back during single stance phase. During double limb support, two platforms manipulate neutral positions to compensate the offset errors generated by velocity changes. This control can, therefore, satisfy natural walking conditions in any direction. Transition phase between the swing and the stance phases is detected by using simple switch sensor system, while human foot motions are sensed by careful calibration with a magnetic motion tracker attached to the shoe. Experimental results of walking simulations at level ground, slope, and stairs, show that with the proposed machine, a general person can walk naturally on various terrains with safety and without any considerable disturbances. This interface can be applied to various areas such as VR navigations, rehabilitation, and gait analysis.

Raspberry Pi Based Smart Adapter's Design and Implementation for General Management of Agricultural Machinery (범용 농기계관리를 위한 라즈베리 파이 기반의 스마트어댑터 설계 및 구현)

  • Lee, Jong-Hwa;Cha, Young-Wook;Kim, Choon-Hee
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.31-40
    • /
    • 2018
  • We designed and implemented the attachable smart adapter for the general management of each company's agricultural machine regardless of whether it is equipped with a CAN (Controller Area Network) module. The smart adapter consists of a main board (Raspberry Pi3B), which operates agricultural machine's management software in Linux environment, and a self-developed interface board for power adjustment and status sensing. For the status monitoring, a sensing interface using a serial input was defined between the smart adapter and the sensors of the agricultural machine, and the state diagram of the agricultural machine was defined for diagnosis. We made a panel to simulate the sensors of the agricultural machine using the switch's on/off contact point, and confirmed the status monitoring and diagnostic functions by inputting each state of the farm machinery from the simulator panel.