• Title/Summary/Keyword: contact effect

Search Result 3,294, Processing Time 0.027 seconds

Comparison of the bite force and occlusal contact area of the deviated and non-deviated sides after intraoral vertical ramus osteotomy in skeletal Class III patients with mandibular asymmetry: Two-year follow-up

  • Kwon, Hyejin;Park, Sun-Hyung;Jung, Hoi-In;Hwang, Woo-Chan;Choi, Yoon Jeong;Chung, Chooryung;Kim, Kyung-Ho
    • The korean journal of orthodontics
    • /
    • v.52 no.3
    • /
    • pp.172-181
    • /
    • 2022
  • Objective: The objectives of this study were to compare the time-dependent changes in occlusal contact area (OCA) and bite force (BF) of the deviated and non-deviated sides in mandibular prognathic patients with mandibular asymmetry before and after orthognathic surgery and investigate the factors associated with the changes in OCA and BF on each side. Methods: The sample consisted of 67 patients (33 men and 34 women; age range 15-36 years) with facial asymmetry who underwent 2-jaw orthognathic surgery. OCA and BF were taken before presurgical orthodontic treatment, within 1 month before surgery, and 1 month, 3 months, 6 months, 1 year, and 2 years after surgery. OCA and BF were measured using the Dental Prescale System. Results: The OCA and BF decreased gradually before surgery and increased after surgery on both sides. The OCA and BF were significantly greater on the deviated side than on the non-deviated side before surgery, and there was no difference after surgery. According to the linear mixed-effect model, only the changes in the mandibular plane angle had a significant effect on BF (p < 0.05). Conclusions: There was a difference in the amount of the OCA and BF between the deviated and non-deviated sides before surgery. The change in mandibular plane angle affects the change, especially on the non-deviated side, during the observation period.

Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber Bundles

  • Tamaryska, SETYAYUNITA;Ragil, WIDYORINI;Sri Nugroho, MARSOEM;Denny, IRAWATI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.392-403
    • /
    • 2022
  • Currently, composite board manufacturing using natural fibers has the potential to expand owing to environmental awareness. To produce a composite board, treatment is required to improve the mechanical and physical properties of the natural fibers. In this study, sodium chloride (NaCl) was used for the chemical treatment. However, studies on chemical treatments using NaCl are limited. This study aimed to investigate the characteristics of kenaf fibers after NaCl treatment. The NaCl treatment concentrations were 1, 3, and 5 wt.% at room temperature, with soaking durations of 1, 2, and 3 h. The tensile strength, strain, and Young's modulus were measured to evaluate the mechanical properties of the fibers. The fiber bundle diameter, weight change owing to treatment, and contact angle were determined to analyze the effect of NaCl treatment. The kenaf fiber bundle treated with 5 wt.% NaCl for 3 h exhibited the highest tensile strength, Young's modulus, reduction in fiber bundle diameter, weight change, and decrease in contact angle compared to those of untreated fiber bundles. The tensile properties of the fiber bundle exhibited a tendency to decrease with increasing fiber bundle diameter. Increasing the soaking duration from 1 to 2 h did not result in a significant decrease in the fiber bundle diameter or an increase in tensile strength. However, a further increase in the soaking duration from 2 to 3 h resulted in a considerable decrease in the fiber bundle diameter and an increase in the tensile strength.

Effect of WC Particle Size on the Microstructure, Mechanical and Electrical Properties of Ag/WC Sintered Electrical Contact Material (Ag/WC 소결 전기 접점 소재의 미세조직, 기계적 및 전기적 특성에 미치는 WC 입자 크기의 영향)

  • Soobin Kim;So-Yeon Park;Jong-Bin Lim;Soon Ho Kwon;Kee-Ahn Lee
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.242-248
    • /
    • 2023
  • The Ag/WC electrical contacts were prepared via powder metallurgy using 60 wt% Ag, 40 wt% WC, and small amounts of Co3O4 with varying WC particle sizes. After the fabrication of the contact materials, microstructure observations confirmed that WC-1 had an average grain size (AGS) of 0.27 ㎛, and WC-2 had an AGS of 0.35 ㎛. The Ag matrix in WC-1 formed fine grains, whereas a significantly larger and continuous growth of the Ag matrix was observed in WC-2. This indicates the different flow behaviors of liquid Ag during the sintering process owing to the different WC sizes. The electrical conductivities of WC-1 and WC-2 were 47.8% and 60.4%, respectively, and had a significant influence on the Ag matrix. In particular, WC-2 exhibited extremely high electrical conductivity owing to its large and continuous Ag-grain matrix. The yield strengths of WC-1 and WC-2 after compression tests were 349.9 MPa and 280.7 MPa, respectively. The high yield strength of WC-1 can be attributed to the Hall-Petch effect, whereas the low yield strength of WC-2 can be explained by the high fraction of high-angle boundaries (HAB) between the WC grains. Furthermore, the relationships between the microstructure, electrical/mechanical properties, and deformation mechanisms were evaluated.

Performance Impact Analysis of Resistance Elements in Field-Effect Transistors Utilizing 2D Channel Materials (2차원 채널 물질을 활용한 전계효과 트랜지스터의 저항 요소 분석)

  • TaeYeong Hong;Seul Ki Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.83-87
    • /
    • 2023
  • In the field of electronics and semiconductor technology, innovative semiconductor material research to replace Si is actively ongoing. However, while research on alternative materials is underway, there is a significant lack of studies regarding the relationship between 2D materials used as channels in transistors, especially parasitic resistance, and RF (radio frequency) applications. This study systematically analyzes the impact on electrical performance with a focus on various transistor structures to address this gap. The research results confirm that access resistance and contact resistance act as major factors contributing to the degradation of semiconductor device performance, particularly when highly scaled down. As the demand for high-frequency RF components continues to grow, establishing guidelines for optimizing component structures and elements to achieve desired RF performance is crucial. This study aims to contribute to this goal by providing structural guidelines that can aid in the design and development of next-generation RF transistors using 2D materials as channels.

Evaluation of Material Durability by Identifying the Relationship between Contact Angle after Wear and Self-cleaning Effect Using Rolling Wear Tester (구름 마모시험 장비(Rolling wear tester)를 이용한 마모 후의 접촉각과 자가세정 효과와의 관계 규명을 통한 재료 내구성 평가)

  • Kyeongryeol Park;Yong Seok Choi;Seongmin Kang;Unseong Kim;Kyungeun Jeong;Young Jin Park;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.256-261
    • /
    • 2023
  • This study is conducted to evaluate the durability of superhydrophobic surfaces, with a focus on two aspects: contact angle measurement and self-cleaning-performance analysis. Superhydrophobic copper and aluminum surfaces are fabricated using the immersion method and subjected to a rolling wear test, in which a 2 kg weight is placed on a rolling tester, under loaded conditions. To evaluate their durability, the contact angles of the specimens are measured for each cycle. In addition, the surface deformation of the specimens before and after the test is analyzed through SEM imaging and EDS mapping. The degradation of the self-cleaning performance is evaluated before and after the wear test. The results show that superhydrophobic aluminum is approximately 4.5 times more durable than superhydrophobic copper; the copper and aluminum specimens could endure 21,000 and 4,300 cycles of wear, respectively. The results of the self-cleaning test demonstrate that superhydrophobic aluminum is superior to superhydrophobic copper. After the wear test, the self-cleaning rates of the copper and aluminum specimens decrease to 72.7% and 83.4%, respectively. The relatively minor decrease in the self-cleaning rate of the aluminum specimen, despite the large number of wear cycles, confirms that the superhydrophobic aluminum specimen is more durable than its copper counterpart. This study is expected to aid in evaluating the durability of superhydrophobic surfaces in the future owing to the advantage of performing wear tests on superhydrophobic surfaces without damaging the surface coating.

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.217-229
    • /
    • 2024
  • This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

Effect of the Residual Impurity on the Prepreg Surface on the Wettability of Encapsulant for Chip on Board Package (칩 온 보드 패키지 적용을 위한 프리프레그 표면 잔류 불순물이 봉지재의 젖음성에 미치는 영향)

  • Gahui Kim;Doheon Kim;Kirak Son;Young-Bae Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.9-15
    • /
    • 2024
  • The effect of the residual impurity on the prepreg surface on the wettability of encapsulant for chip on board package was analyzed with microstructure, compositions and chemical bonds using a scanning electron microscope and X-ray photoelectron spectroscopy. As a result, the contact angle of w/ residual impurity sample was measured to be 28° higher than that of w/o residual impurity sample, and the C-O bond was decreased to be 4% lower than that of w/o residual impurity sample. The surface energy of the prepreg decreased because the impurity ions, Na and F, generated by the manufacturing process and wet etching, reacted chemically with the C on the prepreg surface, forming C-F bonds and breaking the C-O bonds on the prepreg surface. Therefore, the wettability of the encapsulant was degraded because the contact angle between the encapsulant and the prepreg was increased.

Behavioral, physiological, and hormonal responses during pre-slaughter handling in goats: a comparison between trained and untrained handlers

  • Pavan Kumar;Ahmed Abubakar Abubakar;Muideen Adewale Ahmed;Muhammad Nizam Hayat;Fakhrullah Abd Halim;Md. Moklesur Rahman;Mokrish Ajat;Ubedullah Kaka;Yong-Meng Goh;Awis Qurni Sazili
    • Animal Bioscience
    • /
    • v.37 no.11
    • /
    • pp.2000-2007
    • /
    • 2024
  • Objective: The livestock handler attitude and their handling of animals is crucial for improving animal welfare standards, minimizing stress, improving productivity and meat quality. The present study was undertaken to assess the effect of training livestock handlers on behavioral, physiological, and hormonal responses during preslaughter handling in goats. Methods: A total of 6 handlers were divided into trained (trained in basic animal handling practices, animal behavior, and animal welfare), contact trained (not trained directly but interacted and saw the working of trained handlers), and untrained groups (no formal training). The handling experiment was conducted on 18 male goats by following a crossover design. The goats were moved from lairage to slaughter point by trained, contact-trained, and untrained handlers. Various behavioral, physiological, and hormonal parameters were recorded at the lairage before handling and at the slaughter point after handling the goats. Results: The training of livestock handlers had a significant effect on behavioral, physiological, and hormonal responses in goats. The goats handled by untrained and contact-trained handlers were recorded with intense vocalization, significant (p<0.05) increase in heart rate and blood glucose, and catecholamines (adrenaline and nor-adrenaline), thereby indicating stress and poor animal welfare. The trained handlers were observed to use visual interactions (waving of hands or objects, blocking, hand raising, etc), and lower stress responses were recorded in the goats handled by this group. Conclusion: The present study highlights the importance of training to livestock handlers in improving animal welfare and minimizing stress in goats during pre-slaughter stress.