• Title/Summary/Keyword: contact effect

Search Result 3,294, Processing Time 0.035 seconds

Compressive and Bending Behaviors of the Shielded Slot Plate Considering Forming Effect for Fuel Cell Application (성형 이력을 고려한 용융탄산염 연료전지용 쉴디드 슬롯 플레이트의 압축 및 굽힘 거동 분석)

  • Lee, C.W.;Yang, D.Y.;Kang, D.W.;Chang, I.G.;Lee, T.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.341-347
    • /
    • 2012
  • The metallic bipolar plates of the molten carbonate fuel cell(MCFC) are composed of shielded slot plates and a center-plate. The shielded slot plates support the center-plate and the membrane electrode assembly. Compressive forces are applied to the shielded slot plate in order to increase the contact area between shielded slot plates and the membrane electrode assembly (MEA). In the design of the shielded slot plate, it is necessary to predict the mechanical behavior of the shielded slot plate. The shielded slot plates are manufactured by a three-stage forming process consisting of slitting, preforming and the final forming process. The mechanical behavior of the shielded slot plate is largely affected by the forming process. In this study, the simulation of the three-stage forming process was used to predict the mechanical behavior of the shielded slot plate. The present simulation approach showed good agreements with the experimental results.

Dielectric properties of Pt/PVDF/Pt modified by low energy ion beam irradiation

  • Sung Han;Yoon, Ki-Hyun;Jung, Hyung-Jin;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.110-110
    • /
    • 1999
  • Polyvinylidenefluoride (PVDF) is most used in piezoelectric polymer industry. Electrode effect on the electrical properties of PVDF has been investigated. al has been used due to fair adhesion for PVDF. Work function of metal plays an important role on the electrical properties of ferroelectrics for top and /or bottom electrode. However, Al has much lower work function than Pt or Au and so leakage current of Al/PVDF/Al may be large. Pt or Au has not been used for electrode of PVDF system due to poor adhesion. PVDF irradiated by Ar+ ion beam with O2 environment takes good adhesion to inert metal. Contact angle of PVDF to triple distilled water was reduced from 75$^{\circ}$ to 31$^{\circ}$ at 1$\times$1015 Ar+/cm2. Working pressure was 2.3$\times$10-4 Torr and base pressure was 5$\times$10-6 Torr. Pt was deposited by ion beam sputtering and thickness of pt film was about 1000$\AA$. in previous study, enhancing adhesion of Pt on PVDF was shown. in this study, effect of electrode on PVDF will be represented.

  • PDF

Finite element analysis of vehicle-bridge interaction by an iterative method

  • Jo, Ji-Seong;Jung, Hyung-Jo;Kim, Hongjin
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.165-176
    • /
    • 2008
  • In this paper, a new iterative method for solving vehicle-bridge interaction problems is proposed. Iterative methods have advantages over the non-iterative methods in that it is not necessary to update the system matrix for a given wheel location, and the method can be applied for a new type of car or bridge with few or no modifications. In the proposed method, the necessity of system matrices update is eliminated using the equivalent interaction force acting on the bridge, which is obtained iteratively. Ballast stiffness is included in the interaction forces and the geometric compatibility at the contact points are used as convergence criteria. The bridge is considered as an elastic Bernoulli-Euler beam with surface irregularity and ballast stiffness. The moving vehicle is modeled as a multi-axle mass-spring-damper system having many degrees of freedom depending on the number of axles. The pitching effect, which is the interaction effect between the rear and front wheels when a vehicle begins to enter or leave the bridge, is also considered in the formulation including extended ground boundaries having surface irregularity and ballast stiffness. The applicability of the proposed method is illustrated in the numerical studies.

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites Using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.117-120
    • /
    • 2003
  • Electro-micromechanical techniques were applied using four-probe method for carbon nanotube (CNT) or nanofiber (CNF)/epoxy composites with their content. Carbon black (CB) was used to compare with CNT and CNF. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity for double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites, and in CB case they were the lowest compared with CNT and CNF. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Effect of Atmospheric Pressure Flame Plasma Treatment on Surface and Adhesive Bonding Properties between Steel Plate and Rubber (대기압 화염 플라즈마 처리가 강판의 표면 및 고무와의 접착특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • To increase the adhesive strength of acrylonitrile butadiene rubber(NBR) and steel plate, the atmospheric pressure flame plasma(APFP) treatment device is applied. The effect of various conditions(processing velocity and distance) is experimentally investigated to ascertain the optimum conditions to yield the best adhesive properties. It is found that the optimum distance between burner port and steel plate is 40mm and the optimum processing velocity is 50m/min at given condition. When the surface is coated twice with the bonding agent, the adhesion strength of APFP treated steel plate is increased to about 20.5%. It suggests that the surface modification of steel by flame plasma treatment at atmospheric pressure is a proper and applicable method to improve the adhesion strength between steel and rubber.

Effects of Humidity and Sliding Speed on the Wear Behavior of Silicon Nitride Ceramics (습도 및 미끄럼속도가 질화규소의 마멸거동에 미치는 영향에 관한 연구)

  • 이기현;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2597-2605
    • /
    • 1994
  • The wear behavior of two types of $Si_3N_4$ exposed to high and low humidity was examined at various sliding speeds, using bearing steel as disk material under pin-on-disk type sliding conditions. Higher wear rates were obtained at a high humidity than at a low humidity. As the sliding speed was increased, the wear rates were decreased and the effect of humidity on the wear rates of $Si_3N_4$ was reduced. The result that the $Si_3N_4$ pin showed higher wear rate under the high humidity condition was explained by the decrease in microhardness of $Si_3N_4$ due to the chemisorbed moisture on the pin and plowing action by the hard particles of $Fe_2O_3$ from the disk. An increase in the sliding speed is supposed to reduce the effect of humidity on the wear rate of $Si_3N_4$ by raising the average temperature of the disk surface and the local temperature at pin-disk contact point.

Development of the Education Program and It Effect on Osteoporosis and Life Style among Women (여성의 생활양식 변화를 통한 골다공증 예방 교육프로그램의 개발 및 효과)

  • 변영순;김옥수
    • Journal of Korean Academy of Nursing
    • /
    • v.30 no.3
    • /
    • pp.764-775
    • /
    • 2000
  • The purpose of this study was to develop the educational program based on the self-efficacy theory of Bandura(1986) and to identify the effect of the program among women. For this purpose a non-equivalent control group, and a pretest- posttest design was used between the experimental and the control group. The subjects in this study were female and were over the age 40, 37 in the experimental group and 46 in the control group. In this study, the educational program was developed to increase the level of osteoporosis self efficacy and to prevent osteoporosis. The program consisted of watching, videotapes, telephone contact, lectures, and small group discussions. This study was conducted to determine whether the 6 month educational program would increase osteoporosis self- efficacy, thus modifying life styles related to osteoporosis increas BMD. The instruments utilized in this study were the Lifestyle Questionnaire, and the Osteoporosis Self-Efficacy Scale. Also, bone marrow density (BMD) on the left wrist was measured by DTX-200. The findings are as follows: 1. A significant decrease in BMD was observed in the control group. By contrast, no significant change in BMD was observed in the experimental group. 2. The Osteoporosis Self-Efficacy was not significantly changed in both the experimental and control groups. 3. In the experimental group, the number of exercise participants and their exercise times were significantly increased. Also the amount of caffeine intake was significantly decreased.

  • PDF

Prediction of Surface Topography by Dynamic Model in High Speed End Milling (고속 엔드밀 가공시 동적 모델에 의한 표면형상 예측)

  • Lee, Gi-Yong;Ha, Geon-Ho;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1681-1688
    • /
    • 2000
  • A dynamic model for the prediction of surface topography in high speed end milling process is developed. In this model the effect of tool runout, tool deflection and spindle vibration were taken in to account. An equivalent diameter of end mill is obtained by finite element method and tool deflection experiment. A modal parameter of machine tool is extracted by using frequency response function. The tool deflection, spindle vibration chip thickness and cutting force were calculated in dynamic cutting condition. The tooth pass is calculated at the current angular position for each point of contact between the tool and the workpiece. The new dynamic model for surface predition are compared with several investigated model. It is shown that new dynamic model is more effective to predict surface topography than other suggested models. In high speed end milling, the tool vibration has more effect on surface topography than the tool deflection.

The Effect of Quantity Flexibility Contract on the Military Medicine Inventory Using Dynamic Simulation (수량유연성계약이 육군 의약품 재고에 미치는 영향에 관한 시뮬레이션 연구)

  • Choi, Young-Su;Moon, Seoung-Am;Kim, Dong-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.2
    • /
    • pp.27-42
    • /
    • 2008
  • This study simulated the effect of the quantity flexibility contract(QFC) on the Korean military inventory system. The results shows that the QFC make the inventory system more efficient. For validity of this study, we assume the basic four demand patterns (increase, decrease, high variation and long seasonality) which are the exogenous variables of these simulation systems. We measured the difference of the traditional military inventory system's and new QFC system's performances. Under the all demand patterns, QFC models have little inventory than the traditional systems. We suggest, therefore, the military change the supply contract into QFC for decrease inventory and expect the results of this study applied to the company level.

Electrical Properties of CuPc-OFET with Metal Electrode (금속 전극에 따른 CuPc-OFET 의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.751-753
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm. and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF