• Title/Summary/Keyword: contact effect

Search Result 3,294, Processing Time 0.027 seconds

Analysis of the Transmission Error of Spur Gears Depending on the Finite Element Analysis Condition (스퍼 기어의 유한요소해석 조건에 따른 전달 오차 경향성 분석)

  • Jaeseung Kim;Jonghyeon Sohn;Min-Geun Kim;Geunho Lee;Suchul Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.121-130
    • /
    • 2023
  • Finite element analysis is widely used to predict the structural stability and tooth contact performance of gears. This study focused on the effect of finite element modeling conditions of a spur gear on the simulation result and the model simplification. The gear body and teeth, teeth width, configuration of mesh, frictional coefficient, and simulation time interval (gear mesh cycle division) were selected for model simplification for gear analysis. The static transmission error during a single-gear mesh cycle was calculated to represent the performance of the gear, and the elapsed time was measured as a simplification factor. Contact stress distribution was also checked. The differences in maximum transmission error and elapsed time depending on the model simplification methods were analyzed. After all simplification methods were estimated, an optimal combination of the methods was defined, and the result was compared with that of the most detailed modeling methods.

The Measurement of Korean Face Skin Rigidity for a Robotic Headform of Respiratory Protective Device Testing (호흡보호구 평가용 얼굴 로봇을 위한 한국인 얼굴 피부의 경도 측정)

  • Eun-Jin Jeon;Young-jae Jung;Ah-lam Lee;Hee-Eun Kim;Hee-Cheon You
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.248-254
    • /
    • 2023
  • This study aims to measure the skin rigidity of different facial areas among Koreans and propose guidelines for each area's skin rigidity that can be applied with a facial robot for testing respiratory protective devices. The facial skin rigidity of 40 participants, which included 20 men and 20 women, aged 20 to 50, was analyzed. The rigidity measurement was conducted in 13 facial areas, including six areas in contact with the mask and seven non-contact areas, by referring to the facial measurement guidelines of Size Korea. The facial rigidity was measured using the Durometer RX-1600-OO while in a supine position. The measurement procedure involved contacting the durometer vertically with the reference point, repeating the measurement of the same area five times, and using the average of three values whose variability was between 0.4 and 4.2 Shore OO. The rigidity data analysis used precision analysis, descriptive statistics analysis, and mixed-effect ANOVA. The analysis confirmed the rigidity of the 13 measurement areas, with the highest rigidity of the face being at the nose and forehead points, with values of 51.2 and 50.8, respectively, and the lowest rigidity being at the chin and center of the cheek points, with values of 19.2 and 20.7, respectively. Significant differences between gender groups were observed in four areas: the tip of the nose, the point below the chin, the area below the lower jaw, and the inner concha.

Optimization of Fluoride Adsorption on Bone Char with Response Surface Methodology (RSM) (반응표면분석법(RSM)을 이용한 골탄의 불소 흡착 조건 최적화)

  • Hwang, Jiyun;Rachana, Chhuon;Dsane, Victory FiiFi;Kim, Junyoung;Choi, Younggyun;Shin, Gwyam
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.82-90
    • /
    • 2019
  • The Box-Benhken Design (BBD) model of response surface methodology (RSM) was used to optimize fluoride adsorption conditions in water using a 350℃ thermally treated cow bone. Water temperature, pH, contact time, and initial fluoride concentration were selected as variables to be optimized. A second order reaction equation was obtained from a Box-Behnken Design DoE experimental matrix of 29 runs. R2 and p-value of the model were 0.9242 and <0.0001, respectively, indicating that the selected variables had a very substantial effect on the adsorption results. The optimized adsorption capacity of the thermally synthesized bone char was estimated to be 6.46 mgF/g at the water temperature of 39.68℃, pH 6.25, contact time of 88.81 minutes and an initial fluorine concentration of 14.64 mgF/L.

Preparation of Coating Film with Antibacterial and Antifogging Function on PET Substrate (PET 기재 위에 항균성과 김서림 방지 기능을 갖는 코팅 도막 제조)

  • Ho Chan Kwon;Ki Chang Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.439-445
    • /
    • 2023
  • In this study, silver nanoparticles were synthesized by reducing silver nitrate with PVA, and the solution prepared by adding carboxymethyl cellulose (CMC) to the silver nanoparticles was coated on a PET substrate to prepare a coating film with antibacterial and antifogging function. When the coating films were in contact with water vapor at 80 ℃, the uncoated PET substrate was blurred due to the scattering of light due to the occurrence of fog, while the coating film coated with silver nanosol with CMC remained transparent despite contact with water vapor, showing excellent antifogging function. In addition, the antibacterial properties of the coating films were measured by film adhesion method for Staphylococcus aureus, gram-positive bacteria, and Escherichia coli, gram-negative bacteria. The uncoated PET substrate showed a large number of colonies of Staphylococcus aureus and Escherichia coli, while the coating film coated with the silver nanosol greatly inhibited the growth of Staphylococcus aureus and Escherichia coli, resulting in excellent antibacterial effect.

Change of gait pattern of a patient with cerebral stroke by peroneal nerve stimulation therapy (뇌졸중 환자의 비골신경 자극에 따른 보행 양상의 변화)

  • Choi, Sanho;Lee, Ilsuk;Hong, Haejin;Oh, Jaegun;Sung, Kang-keyng;Lee, Sangkwan
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.14 no.1
    • /
    • pp.61-70
    • /
    • 2013
  • ■ Objectives The goal of this pilot study is to observe the change of gait pattern in a patient after peroneal nerve electrical stimulation(PNST). ■ Methods We analyzed the gait pattern of stroke patient using treadmill gait analysis system before and after PNST for seven weeks. The PNST was carried out for 20minutes every day except Sunday. In addition, the measurement was carried out every Saturday. At the fifth week, the PNST was not carried out to confirm whether the effect of PNST was disappeared immediately when PNST was not applied. ■ Results After PNST, while heel contact time and heel max force increased and forefoot and midfoot max force decreased, the gait parameters such as cadence, velocity, swing phase, stance phase, total double support, step length, stride length, step time, stride time and forefoot contact time, were not changed. ■ Conclusion Gait of a patient with cerebral stroke was changed positively after PNST.

  • PDF

Deep Learning-based Rail Surface Damage Evaluation (딥러닝 기반의 레일표면손상 평가)

  • Jung-Youl Choi;Jae-Min Han;Jung-Ho Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.505-510
    • /
    • 2024
  • Since rolling contact fatigue cracks can always occur on the rail surface, which is the contact surface between wheels and rails, railway rails require thorough inspection and diagnosis to thoroughly inspect the condition of the cracks and prevent breakage. Recent detailed guidelines on the performance evaluation of track facilities present the requirements for methods and procedures for track performance evaluation. However, diagnosing and grading rail surface damage mainly relies on external inspection (visual inspection), which inevitably relies on qualitative evaluation based on the subjective judgment of the inspector. Therefore, in this study, we conducted a deep learning model study for rail surface defect detection using Fast R-CNN. After building a dataset of rail surface defect images, the model was tested. The performance evaluation results of the deep learning model showed that mAP was 94.9%. Because Fast R-CNN has a high crack detection effect, it is believed that using this model can efficiently identify rail surface defects.

Coagulant bath medium effect towards polylactic acid membranes structure and methylene blue dye removal

  • Amira M. Nasib;Stephen Simon;Syahmie M. Rasidi;Siti Kartini E. Ab. Rahim;Hoo Peng Yong;Ng Qi Hwa;Khairiraihanna Johari
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.243-251
    • /
    • 2024
  • The asymmetric polylactic acid (PLA) membrane was prepared via phase inversion method using non-solvent induced separation (NIPS) technique. This study aims to synthesized as well as to characterize the PLA membrane and evaluating the membrane performance on water flux and permeability. In addition, this research also studied the removal performance of methylene blue dye. The polymer solution has been prepared using 12 wt.% of PLA and dissolved in 88 wt.% of Dimethylacetamide (DMAc) as a solvent. Then, the cast film was immersed in different ratio of coagulant bath medium (distilled water: methanol: ethanol) ranging from 100:0:0, 75:25:0, 75:0:25 and 75:12.5:12.5, respectively). Several characterizations were performed which include, membrane contact angle and membrane porosity. Performance PLA membranes were determined in terms of water flux and permeability at 1 bar transmembrane pressure using dead-end permeation cell. Finally, methylene blue (MB) removal efficiency was tested at the same transmembrane pressure. The findings revealed that the increase of alcohol concentration in coagulant bath resulted in higher porosity and lower contact angle. In short, MB dye rejection efficiency is also closely related to the amount of alcohol ratio used in coagulant baths. Increases in concentration of methanol and ethanol in coagulant bath medium increases the membrane porosity thus increased in efficiency of methylene blue rejection.

Physical Operations of a Self-Powered IZTO/β-Ga2O3 Schottky Barrier Diode Photodetector

  • Madani Labed;Hojoong Kim;Joon Hui Park;Mohamed Labed;Afak Meftah;Nouredine Sengouga;You Seung Rim
    • Nanomaterials
    • /
    • v.12 no.7
    • /
    • pp.1061-1074
    • /
    • 2022
  • In this work, a self-powered, solar-blind photodetector, based on InZnSnO (IZTO) as a Schottky contact, was deposited on the top of Si-doped β-Ga2O3 by the sputtering of two-faced targets with InSnO (ITO) as an ohmic contact. A detailed numerical simulation was performed by using the measured J-V characteristics of IZTO/β-Ga2O3 Schottky barrier diodes (SBDs) in the dark. Good agreement between the simulation and the measurement was achieved by studying the effect of the IZTO workfunction, β-Ga2O3 interfacial layer (IL) electron affinity, and the concentrations of interfacial traps. The IZTO/β-Ga2O3 (SBDs) was tested at a wavelength of 255 nm with the photo power density of 1 mW/cm2. A high photo-to-dark current ratio of 3.70×105 and a photoresponsivity of 0.64 mA/W were obtained at 0 V as self-powered operation. Finally, with increasing power density the photocurrent increased, and a 17.80 mA/W responsivity under 10 mW/cm2 was obtained.

Analysis of the Impact of Alignment Errors on Electrical Signal Transmission Efficiency in Interconnect and Bonding Structures (배선 및 본딩 접합 구조에서 정렬 오차에 따른 전기 신호 전달 효율 변화에 대한 분석)

  • Seung Hwan O;Seul Ki Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.38-41
    • /
    • 2024
  • In semiconductor manufacturing, the alignment process is fundamental to all manufacturing steps, and alignment errors are inevitably introduced. These alignment errors can lead to issues such as increased resistance, signal delay, and degradation. This study systematically analyzes the changes in the electrical characteristics of the bonding interface when alignment errors occur in metal interconnect and bonding structures. The results show that current density tends to concentrate at the edges of the bonding interface, with the middle part of the interface being particularly vulnerable. As alignment errors increase, the current path redistributes, causing previously concentrated current areas to disappear and an effect similar to an increase in contact area, resulting in a decrease in resistance in certain vulnerable parts. These findings suggest that proposing structural improvements to eliminate the vulnerable parts of the bonding interface could lead to interconnect with significantly improved resistance performance compared to existing structure. This study clarifies the impact of alignment errors on electrical characteristics, which is expected to play a crucial role in optimizing the electrical performance of semiconductor devices and enhancing the efficiency of the manufacturing process.

Preparation and characterization of PVDF Flat sheet membrane for VMD: Effect of different non-solvent additives and solvents in dope solution

  • Meenakshi Yadav;Sushant Upadhyaya;Kailash Singh
    • Membrane and Water Treatment
    • /
    • v.15 no.4
    • /
    • pp.163-176
    • /
    • 2024
  • Asymmetric flat sheet poly(vinylidene fluoride) (PVDF) membranes were fabricated using the phase inversion technique, employing four distinct solvents with varying solubility power: N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), and N-Methyl-2-pyrrolidone (NMP). The influence of these solvents on the crystalline properties of the polymers was investigated using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) to elucidate their role in PVDF polymorphism during membrane formation. Our findings revealed significant variations in membrane crystalline phase due to the dissolution of PVDF in different solvents, with α-polymerization predominant in membranes cast with NMP and DMSO, while DMF and DMAc solvents favored β-type polymerization. Further, various additives including PEG-400, TiO2, LiCl, LiBr, acetone, ethanol, propanol, and water were employed to evaluate their impact on membrane morphology and properties. Scanning electron microscopy (SEM) and Ultimate testing machine (UTM) were utilized to analyze membrane morphology, while the tensile strength, contact angle, pore size, and porosity were estimated using the sessile drop method, imageJ, and gravimetric method, respectively. Our results demonstrated that all additives exerted influence on membrane morphology and properties depending on their characteristics and interactions with solvents and polymers. Notably, acetone, being volatile, facilitated the formation of a thin PVDF layer on the membrane surface, resulting in a reduced average pore size (0.18㎛). Conversely, LiCl and LiBr acted as pore-forming additives, yielding membranes with distinct pore characteristics and porosity. Moreover, water as a non-solvent additive induced pregelation during the nonsolvent-induced phase separation (NIPS) process, thereby promoting pore formation (53% porosity) and enhancing membrane hydrophobicity (104° contact angle). To evaluate the quality of synthesized membranes, permeate flux ranging from 16.2 L/m2.hr to 27.9 L/m2.hr with a salt rejection rate of 98 %, was evaluated using Vacuum Membrane Distillation (VMD).