• Title/Summary/Keyword: contact dynamics

Search Result 379, Processing Time 0.022 seconds

NMR Spectroscopic Assessment of the Structure and Dynamic Properties of an Amphibian Antimicrobial Peptide (Gaegurin 4) Bound to SDS Micelles

  • Park, Sang-Ho;Son, Woo-Sung;Kim, Yong-Jin;Kwon, Ae-Ran;Lee, Bong-Jin
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.261-269
    • /
    • 2007
  • The structure and dynamics of a 37-residue antimicrobial peptide gaegurin 4 (GGN4) isolated from the skin of the native Korean frog, Rana rugosa, was determined in SDS micelles by NMR spectroscopy. The solution structure of the peptide in SDS micelles was determined from 352 NOE-derived distance constraints and 22 backbone torsion angle constraints. Dynamic properties for the amide backbone were characterized by $^1H-^{15}N $heteronuclear NOE experiments. The structural study revealed two amphipathic helices spanning residues 2-10 and 16-32 and that the helices were connected by a flexible loop. An intraresidue disulfide bridge was formed between residues Cys31 and Cys37 near the C-terminus. The loop region (11-15) connecting the two helices are were slightly more flexible than these helices themselves. From the fact that since there is no contact NOEs between two helices, it is implied that the GGN4 peptide shows an independent motion of both helices which has an angle of about $ 60^{\circ}-120^{\circ}$ from each other.

A Study on the Analysis of Design Parameters for Development of LSD (다판 클러치방식 차동제한장치 개발을 위한 설계인자 분석에 관한 연구)

  • Shin, Young-Ho;Lee, Dong-Won;Shin, Chun-Se
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.15-21
    • /
    • 2010
  • A differential case equipped with LSD(limited slip differential) has several advantages over a normal type for rear wheel drive vehicles. Specially, the torque distribution can be done between left and right drive wheel in the state of limited slip differential. Also although LSD types are very various according to operating type, medium and torque distribution, a multi-clutch type is generally applied to rear wheel drive vehicles. So, this study presents the analysis of design parameters for development of a friction plate for multi-clutch type LSD using vehicle road test, the simulation of analytical model and the development of vehicle dynamics model by a benchmark product. According to this investigation, the design parameters which are pre-load of coil spring, friction plate and contact area quantity, friction coefficient and TBR(torque bias ratio) for a friction plate are derived from experiment and simulation and consequently, vehicle dynamics model has been constructed for the development of friction plate for multi-clutch type LSD.

Dieless Wire Drawing by Enforced Necking Method (강제 네킹에 의한 금속 와이어 인발)

  • Huh, You;Kim, Seung-Hoon;Kim, Ihn-Seok;Paik, Young-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.98-105
    • /
    • 2007
  • In modern industries, materials are required that possess multi-functional properties and at the same time flexibility in their shapes with structural stability. The major technology realizing this requirement consists of thinning metal wires and laying them with stable contact nodes. This research has dealt with a new method to manufacture thin wires by drawing without applying dies, but with introducing enforced necking, which enables to process multi-ends. Based on the new method, the process dynamics was modelled and its steady-state characteristics were analyzed. Results showed that the profiles of the material velocity in the drawing zone increased with a downward convex shape, while the cross-sectional area decreased with the shape of upward convex. The microwave heating turned out to be effective in wire drawing, but dependent on the input feeding direction. The variation in the diameters of the drawn wires was negatively affected by increasing the drawing ratio.

Orbit Determination and Maneuver Planning for the KOMPSAT Spacecraft in Launch and Early Orbit Phase Operation

  • Lee, Byung-sun;Lee, Jeong-Sook;Won, Chang-Hee;Eun, Jong-Won;Lee, Ho-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.29-32
    • /
    • 1999
  • Korea Multi-Purpose SATellite(KOMPSAT) is scheduled to be launched by TAURUS launch vehicle in November, 1999. Tracking, Telemetry and Command(TT&C) operation and the flight dynamics support should be performed for the successful Launch and Early Orbit Phase(LEOP) operation. After the first contact of the KOMPSAT spacecraft, initial orbit determination using ground based tracking data should be performed for the acquisition of the orbit. Although the KOMPSAT is planned to be directly inserted into the Sun- synchronous orbit of 685 km altitude, the orbit maneuvers are required fur the correction of the launch vehicle dispersion. Flight dynamics support such as orbit determination and maneuver planning will be performed by using KOMPSAT Mission Analysis and Planning Subsystem(MAPS) in KOMPSAT Mission Control Element(MCE). The KOMPSAT MAPS have been jointly developed by Electronics and Telecommunications Research Institute(ETRI) and Hyundai Space & Aircraft Company(HYSA). The KOMPSAT MCE was installed in Korea Aerospace Research Institute(KARI) site for the KOMPSAT operation. In this paper, the orbit determination and maneuver planning are introduced and simulated for the KOMPSAT spacecraft in LEOP operation. Initial orbit determination using short arc tracking data and definitive orbit determination using multiple passes tracking data are performed. Orbit maneuvers for the altitude correction and inclination correction are planned for achieving the final mission orbit of the KOMPSAT.

  • PDF

Analysis on Aerodynamic Characteristics of Drying Process in R2R Printed Electronics (롤투롤 전자인쇄 건조공정의 공기역학적 특성분석)

  • Seo, Yang-Ho;Chang, Young-Bae;Kim, Chang-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.95-103
    • /
    • 2010
  • Roll to Roll (R2R) is one of the most promising production technologies in the printed electronics such as OLEDs, e-paper, backplanes, RFID because this technology can save production cost and increase production speed. Printed electronics includes various processes such as printing, drying, winding, unwinding, and so on. In printed electronics R2R system, air-flotation oven is employed for drying process. Therefore, it is essential to introduce efficient and fast drying process when printing is finished. This paper considers the analysis of drying process in R2R that involves hot air flow. Air-flotation oven consists of non-contact supports and drying of coated web materials such as plastic films and paper. In this paper, experimental results and numerical analysis of pressure-pad air bar are investigated. The aerodynamic characteristics of pressure-pad air bar are numerically calculated using computational fluid dynamics (CFD) approach. Then the measured values of the aerodynamic forces for air bars are compared with those of CFD analysis.

Sliding Mode Controller Design for Biped Robot (이족보행로봇을 위한 슬라이딩 제어기 설계)

  • Park, In-Gyu;Kim, Jin-Geol;Kim, Ki-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.137-146
    • /
    • 2001
  • A robust controller with the sliding mode is proposed for stable dynamic walking of the biped robot in this paper. For the robot system to be controlled, which is modeled as 14 DOF rigid bodies by the method of multi-body dynamics, the joint angle trajectories are determined by the velocity transformation matrix. Also Hertz force model and Hysteresis damping element are utilized for the ground reaction and impact forces during the contact with the ground. The biped robot system becomes unstable since those forces contain highly confused noise components and some discontinuity, and modeling uncertainties such as parameter inaccuracies. The sliding mode control is applied to solve above problems. Under the assumption of the bounded estimation errors on the unknown parameters, the proposed controller provides a successful way to achieve the stability and good performance in spite of the presence of modeling imprecisions of uncertainties.

  • PDF

QM/MM-MD 방법을 이용한 용액 속에서의 Potassium Thiocyanate의 Association/Dissociation Dynamics 연구

  • Nam, Hye-Rim;Ghosh, ManikKumer;Choe, Cheol-Ho
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.347-358
    • /
    • 2014
  • 본 논문에서는 양자 역학적 분자 동역학(Quantum Mechanical/Molecular Mechanical-Molecular Dynamics, QM/MM-MD)을 통해 수용액에 녹아 있는 Potassium Thiocyanate의 dynamics를 연구했다. Umbrella sampling technique을 활용하여 association/dissociation에 해당하는 Free energy surface를 구했다. 두 개의 Free energy minimum이 녹아 있는 두 이온의 center of mass 사이의 거리가 $4{\AA}$일 때와 $5{\sim}6{\AA}$ 부근일 때 나타났으며 $4{\AA}$일 때 더 안정 했다. 본 논문에서는 $4{\AA}$일 때를 Contact Ion Pair(CIP) $6{\AA}$일 때를 Dissociation Ion Pair(DlP)라고 칭했다. 이 minimum들이 무엇인 지를 밝혀 내기 위해 추가 연구를 수행하였다. Free energy 상에서 가장 안정 할 때(CIP) solute인 Potassium thiocyanate의 구조를 살펴 봤더니 Potassium ion은 Thiocyanate ion의 Sulfur보다 Nitrogen side를 선호하였다. 그 원인을 알아보기 위해 salvation shell의 구조를 Radial distribution function을 통해 살펴 봤더니 물 분자가 Nitrogen보다 Sulfur와 더 강한 상호작용을 하고 있었다. 그로 인해 Potassium ion이 Nitrogen을 선호한단 결과가 나온 것이다. 한편, 두 번째 minimum은 물 분자가 Potassium 이온과 Thiocyanate 이온 사이에 flexible하게 bridging을 하는 구조였다. 또한 단순 양자 계산을 통해서도 비슷한 구조를 얻을 수 있었다. 그러나 QM 계산은 0K에서 수행하는 것이기 때문에 엔트로피 효과가 없는 계산이지만 본 연구는 온도 300K로 실제 용매와 가깝게 수행함으로써 고정되어 있는 구조가 아니라 엔트로피와 엔탈피가 균형적으로 존재하는 실제 용액 속에서의 구조를 처음으로 보여주는 것이다.

  • PDF

Dynamics of the oscillating moving load acting on the hydroelastic system consisting of the elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Ismailov, Meftun I.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.403-430
    • /
    • 2016
  • This paper studies the dynamics of the lineal-located time-harmonic moving-with-constant-velocity load which acts on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid - strip and rigid wall. The plane-strain state in the plate is considered and its motion is described by employing the exact equations of elastodynamics but the plane-parallel flow of the fluid is described by the linearized Navier-Stokes equations. It is assumed that the velocity and force vectors of the constituents are continuous on the contact plane between the plate and fluid, and impermeability conditions on the rigid wall are satisfied. Numerical results on the velocity and stress distributions on the interface plane are presented and discussed and the focus is on the influence of the effect caused by the interaction between oscillation and moving of the external load. During these discussions, the corresponding earlier results by the authors are used which were obtained in the cases where, on the system under consideration, only the oscillating or moving load acts. In particular, it is established that the magnitude of the aforementioned interaction depends significantly on the vibration phase of the system.

Modelling cavitating flow around underwater missiles

  • Petitpas, Fabien;Saurel, Richard;Ahn, Byoung-Kwon;Ko, Sung-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.263-273
    • /
    • 2011
  • The diffuse interface model of Saurel et al. (2008) is used for the computation of compressible cavitating flows around underwater missiles. Such systems use gas injection and natural cavitation to reduce drag effects. Consequently material interfaces appear separating liquid and gas. These interfaces may have a really complex dynamics such that only a few formulations are able to predict their evolution. Contrarily to front tracking or interface reconstruction method the interfaces are computed as diffused numerical zones, that are captured in a routinely manner, as is done usually with gas dynamics solvers for shocks and contact discontinuity. With the present approach, a single set of partial differential equations is solved everywhere, with a single numerical scheme. This leads to very efficient solvers. The algorithm derived in Saurel et al. (2009) is used to compute cavitation pockets around solid bodies. It is first validated against experiments done in cavitation tunnel at CNU. Then it is used to compute flows around high speed underwater systems (Shkval-like missile). Performance data are then computed showing method ability to predict forces acting on the system.

Pantograph-catenary Dynamic Interaction for a Overhead Line Supported by Noise Barrier

  • Belloli, Marco;Collina, Andrea;Pizzigoni, Bruno
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.55-64
    • /
    • 2012
  • Subject of the paper is a particular configuration of overhead line, in which noise barrier structure is used as supports of the catenary instead of standard poles. This configuration is foreseen in case the noise barrier position is in conflict with the poles location. If the catenary is supported by the noise barrier, the motion that the latter undergo due to wave pressure associated to train transit is transmitted to the overhead line, so that potentially it influences the interaction between the catenary itself and the pantograph of the passing train. The paper focuses on the influence of such peculiar configuration on the quality of the current collection of high speed pantograph, for single and double current collection. The study has been carried out first with an experimental investigation on the pressure distribution on noise barrier, both in wind tunnel and with in-field tests. Subsequently a numerical analysis of the dynamics of the barrier subjected to the wave pressure due to train transit has been carried out, and the output of such analysis has been used as input data for the simulation of the pantograph-dynamic interaction at different speeds and with front or rear pantograph in operation. Consideration of structural modifications was then highlighted, in order to reduce the influence on the contact loss percentage.