• 제목/요약/키워드: contact conductance

검색결과 39건 처리시간 0.023초

최적 핵연료 접촉 열전도도 모델 개발을 위한 예비 연구 (Preliminary Study for the Development of Optimum Fuel Contact Conductance Model)

  • 양용식;신창환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2488-2493
    • /
    • 2007
  • A gap conductance is very important factor which can affect nuclear fuel temperature. Especially, in case of an annular fuel, a gap conductance effect can lead an unexpected heat split phenomena which is caused by a large difference of an inner and outer gap conductance. The gap conductance mechanism is very complicated behavior due to the its strong dependency on microscopic factors such as a contact surface roughness, local contact pressure and local temperature. In this paper, for the decision of test temperature and pressure range, a procedure and calculation results of in-reactor fuel temperature and pressure analysis are summarized which can be applied to test equipment design and determination of test matrix. Based upon analysis results, it is concluded that the minimum and maximum test temperature are $300^{\circ}C$ and $530^{\circ}C$ respectively, and the maximum pellet/cladding interfacial contact pressure should be observed up to 45MPa.

  • PDF

Determination of Thermal Contact Conductance of an Injection Mold Assembly for the Prediction of Mold Surface Temperature

  • Lee, Ki-Yeon;Kim, Kyeong-Min;Park, Keun
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.1008-1012
    • /
    • 2012
  • Injection molds are fabricated by assembling a number of plates in which mold core and cavity components are inserted. The assembled structure causes a number of contact interfaces between each component where the heat transfer is affected by the thermal contact resistance. However, the mold assembly has been treated as a one body in numerical analyses of injection molding, which has a limitation in predicting the mold temperature distribution during the molding cycle. In this study, a numerical approach that considers the thermal contact effect is proposed to predict the heat transfer characteristics of an injection mold assembly. To find the thermal contact conductance between the mold core and plate, a number of finite element (FE) simulations were performed with the design of experiment (DOE) and statistical analysis. Thus, the heat transfer analyses using the obtained conductance values can provide more reliable results than conventional one-body simulations.

핵 연료 요소내의 접촉 열전도도 측정 (Measurement of The Thermal Contact Conductance in Nuclear Fuel Element)

  • ;윤병조
    • Nuclear Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.75-81
    • /
    • 1990
  • 핵연료봉내의 온도 분포를 결정하는데 있어서 중요한 핵연료소자와 피복판 사이의 접촉 열전도도를 결정하기 위한 실험을 수행하였다. 이 실험에 사용된 측정장치는 접촉압력을 임의로 변화시켜 줄 수 있는 가압기와 열전대, 진공펌프, 핵연료소자, 봉형태의 피복관, 그리고 두 개의 히터 등으로 구성되어 있다. 접촉 열전도도는 $UO_2$ 소자와 Zircaloy-2 피복관 사이의 접촉 압력과 표면 조도를 변화시키면서 측정하였다. 그 결과 두 물체사이의 접촉압력이 증가함에 따라, 그리고 표면이 매끄러울수록 접촉 열전달계수는 증가하였다. 실험에서 얻은 값을 가지고 상관식을 만들었으며 일반적으로 사용되고 있는 상관식과 비교하였다.

  • PDF

원통결합부의 열특성 해석 (제1보) -주축베어링 내륜계의 수치해석을 중심으로- (Analysis of the thermoelastic begavior on the contact joint of compound cylinder)

  • 김선민;박기환;이선규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.629-634
    • /
    • 1996
  • Heat generation in machine operating condition makes thermal deformation and thermalstress in the structure, which results in the change the contact characteristics of machine joint such s change of shrinkage fit, contact heat conductance and contact pressure. As the change of contact pressure is related to variation of static, dynamic and thermalcharacteristics, the prediction of transient contact perssure is strongly required. This paper presents some analytical results which will be effective to predict static and dynamic characteristics of the compound cylindrical structure.

  • PDF

접촉전도와 반투명 복사가 반도체 웨이퍼의 CVD 공정 중 열전달에 미치는 영향 (Effect of Contact Conductance and Semitransparent Radiation on Heat Transfer During CVD Process of Semiconductor Wafer)

  • 윤용석;홍혜정;송명호
    • 대한기계학회논문집B
    • /
    • 제32권2호
    • /
    • pp.149-157
    • /
    • 2008
  • During CVD process of semiconductor wafer fabrication, maintaining the uniformity of temperature distribution at wafer top surface is one of the key factors affecting the quality of final products. Effect of contact conductance between wafer and hot plate on predicted temperature of wafer was investigated. The validity of opaque wafer assumption was also examined by comparing the predicted results with Discrete Ordinate solutions accounting for semitransparent radiative characteristics of silicon. As the contact conductance increases predicted wafer temperature increases and the differences between maximum and minimum temperatures within wafer and between wafer and hot plate top surface temperatures decrease. The opaque assumption always overpredicted the wafer temperature compared to semitransparent calculation. The influences of surrounding reactor inner wall temperature and hot plate configuration are then discussed.

Origin of Multiple Conductance Peaks in Single-Molecule Junction Experiments

  • Park, Min Kyu;Kim, Hu Sung;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.654-654
    • /
    • 2013
  • One of the most important yet unresolved problems in molecular electronics is the controversy over the number and nature of multiple conductance peaks in single-molecule junctions. Currently, there are three competing explanations of this observation: (1) manifestation of different molecule-electrode contact geometries, (2) formation of gauche defects within the molecular core, (3) involvement of different electrode surface orientations [1]. However, the exact origin of multiple conductance peaks is not yet fully understood, which indicates our incomplete understanding of the scientifically as well as techno-logically important organic-metal contacts. To theoretically resolve this problem, we previously applied a multiscale computational approach that combines force fields molecular dynamics (FF MD), density functional theory (DFT), and matrix Green's function (MGF) calculations [2] to a thermally fluctuating haxanedithiol (C6DT) molecule stretched between flat Au(111) electrodes, but could observe only a single conductance peak [3]. In this presentation, using DFT geometry optimizations and MGF calculations, we consider molecular junctions with more realistic molecule-metal contact conformations and Au(111) electrode surface directions. We also conduct DFT-based molecular dynamics for the highly stretched junction models to confirm our conclusion. We conclude that the S-Au coordination number should be the more dominant factor than the electrode surface orientation.

  • PDF

인공산성우와 토양시비가 소나무잎의 광합성속도, 왁스 함량 및 접촉각에 미치는 영향 (Effects of Simulated Acid Rain and Soil Fertilizers on Photosynthetic Rate, wax Content, and Contact Angle of Japanese Red Pine(Pinus densiflora Sieb. et Zucc.) Leaves)

  • 최기영;이용범;채의석;이경재
    • 한국대기환경학회지
    • /
    • 제12권3호
    • /
    • pp.263-268
    • /
    • 1996
  • This study was conducted for the assessment of the effects of acid rain and soil fertilizers on photosynthetic rate, was content, and contact angle on 5-year seedlings of Japanese red pine (Pinus densiflora Sieb. et Zucc.) leaves. The seedlings were exposed to pH 3.0 (simulated acid rain), pH 6.5 (groung water) and rain (pH around 4.6). The seedlings were also treated with $Ca(OH)_2, Mg(OH)_2, and Ca(OH)_2 + Mg(OH)_2 + C.F.(compound fertilizer)$. Photosynthetic rate, stomatal conductance, was content, contact angle value, and mineral nutrient content of the leaves were measured and the results were as follows: 1. Photosynthetic rate and stomatal conductance of the leaves increased with the increase of pH. Photosynthetic rate and stomatal conductance increased with application of soil fertilizer in the pH 3.0 treatment, but showed no changes in the rain and the pH 6.5. 2. Contact angle value and was content of the leaves did not change with the pH treatment, but increased with the fertilizer treatments. 3. Mineral nutrient contents of the leaves were lowest in the rain treatment and highest in the pH 6.5 treatment. The increase of mineral nutrient contents was observed with the soil fertilizer treatments.

  • PDF

Energy Gap of $MgB_2$ from Point Contact Spectroscopy

  • Lee, Suyoun;Yonuk Chong;S. H. Moon;Lee, H. N.;Kim, H. G.
    • Progress in Superconductivity
    • /
    • 제3권2호
    • /
    • pp.146-150
    • /
    • 2002
  • We performed the point contact spectroscopy on newly discovered superconductor $MgB_2$ thin films with Au tip. In the point contact spectroscopy of the metallic Sharvin limit, the differential conductance below the gap is twice as that above the gap by virtue of Andreev Reflection. After some surface cleaning processes of sample preparation such as ion-milling and wet etching, the obtained dI/dV versus voltage curves are relatively well fitted to the Blonder-Tinkham-Klapwijk (BTK) formalism. Gaps determined by this technique were distributed in the range of 3meV~ 8meV with the BCS value of 5.9meV in the weak coupling limit. We attribute these discrepancies to the symmetry of the gap parameter and the degradation of the surface of the sample. We also present the temperature dependence of the conductance vs voltage curve and thereby the temperature dependence of the gap.

  • PDF

Hydrazine Doped Graphene and Its Stability

  • Song, MinHo;Shin, Somyeong;Kim, Taekwang;Du, Hyewon;Koo, Hyungjun;Kim, Nayoung;Lee, Eunkyu;Cho, Seungmin;Seo, Sunae
    • Applied Science and Convergence Technology
    • /
    • 제23권4호
    • /
    • pp.192-199
    • /
    • 2014
  • The electronic property of graphene was investigated by hydrazine treatment. Hydrazine ($N_2H_4$) highly increases electron concentrations and up-shifts Fermi level of graphene based on significant shift of Dirac point to the negative gate voltage. We have observed contact resistance and channel length dependent mobility of graphene in the back-gated device after hydrazine monohydrate treatment and continuously monitored electrical characteristics under Nitrogen or air exposure. The contact resistance increases with hydrazine-treated and subsequent Nitrogen-exposed devices and reduces down in successive Air-exposed device to the similar level of pristine one. The channel conductance curve as a function of gate voltage in hole conduction regime keeps analogous value and shape even after Nitrogen/Air exposure specially whereas, in electron conduction regime change rate of conductance along with the level of conductance with gate voltage are decreased. Hydrazine could be utilized as the highly effective donor without degradation of mobility but the stability issue to be solved for future application.

유한요소 열해석의 3차원 불일치격자경계면의 절점 접촉열교환계수 계산 연구 (Study of Computing Nodal Thermal Contact Conductance between 3 Dimensional Unmatched Grid Interfaces for Finite Element Thermal Analysis)

  • 김민기
    • 한국항공우주학회지
    • /
    • 제45권12호
    • /
    • pp.1021-1030
    • /
    • 2017
  • 본 논문은 유한요소 열해석 시 불일치하는 격자 접촉면의 열교환계수를 효과적으로 계산하는 방법에 대해 논의한다. 원래 유한요소해석은 두 경계면 사이의 격자가 일치해야 하는데, 복잡하고 다양한 재질의 형상들의 접촉면을 모두 일치하기 위해서는 많은 수고와 계산량이 소요된다. 본문은 이를 극복하기 위해 서로 다른 두 격자면의 접촉 열교환계수를 각 절점으로 효과적으로 분배하는 새로운 기법을 제안하였다. 제시된 기법의 지향점을 서술하고 이를 위해 격자면의 형상에 의존성이 낮은 절점 가중치 분배 기법을 서술하였다. 그리고 이를 3차원의 곡면 접촉면에도 적용하여 제시한 방법론의 범용성을 확인함으로서 열해석을 포함한 여타 유한요소 해석 기법에도 적용 가능함을 알 수 있다.