• Title/Summary/Keyword: consumption vision

Search Result 90, Processing Time 0.024 seconds

Consumption Vision in Apparel Buying Decision Making (의복 구매 의사 결정에 관련된 소비 비젼에 관한 연구)

  • 박은주
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.4
    • /
    • pp.336-349
    • /
    • 2002
  • The purpose of this paper is to examine the characteristics of consumption vision related to the apparel buying decision-making. They propose that consumers form mental images of future consumption situations and that these consumption visions influence their decision-making. Consumers can imagine themselves consuming apparel products and experiencing the consequences of this consumption. By imagining the likely outcomes, they are able to identify the salient characteristics of each alternative and develop beliefs about their outcomes. Also, they can experience affective reactions to the outcomes they imagines. In this way, they form the cognitive and affective basis for their preferences and construct several consumption visions in the apparel buying decision-making. A consumption vision is "a visual image of certain product-related behaviors and their consequences....(they consisted of concrete and vivid mental images that enable consumers to vicariously experience the self-relevant consequences of product use"(Walker & Olson, 1994). We conducted unstructured, depth interviews with 9 groups participating 48 students at universities located in Busan, based on the results of previous studies. The results show that consumption visions related to the apparel buying decision-making are characterized as self-image, reactions of others, affection and mood, visual imagine, and self-satisfaction. By constructing consumption visions based on the various perspectives, consumers are influenced in the apparel buying decision-making. Many subjects reported experiencing positive affect when imagining positive outcomes of product use. Other subjects mentioned using consumption visions for purely hedonic reasons. With no intention of purchasing apparel products, consumers may evoke consumption visions to escape from the daily life, to fantasize and daydream about pleasurable consumption situations, and to enhance the mood. That is, the consumption vision related to the apparel buying decision-making helps consumers anticipate an uncertain future and make the purchase of apparel products.

  • PDF

Retina-Motivated CMOS Vision Chip Based on Column Parallel Architecture and Switch-Selective Resistive Network

  • Kong, Jae-Sung;Hyun, Hyo-Young;Seo, Sang-Ho;Shin, Jang-Kyoo
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.783-789
    • /
    • 2008
  • A bio-inspired vision chip for edge detection was fabricated using 0.35 ${\mu}m$ double-poly four-metal complementary metal-oxide-semiconductor technology. It mimics the edge detection mechanism of a biological retina. This type of vision chip offer several advantages including compact size, high speed, and dense system integration. Low resolution and relatively high power consumption are common limitations of these chips because of their complex circuit structure. We have tried to overcome these problems by rearranging and simplifying their circuits. A vision chip of $160{\times}120$ pixels has been fabricated in $5{\times}5\;mm^2$ silicon die. It shows less than 10 mW of power consumption.

  • PDF

A Low Power Analog CMOS Vision Chip for Edge Detection Using Electronic Switches

  • Kim, Jung-Hwan;Kong, Jae-Sung;Suh, Sung-Ho;Lee, Min-Ho;Shin, Jang-Kyoo;Park, Hong-Bae;Choi, Chang-Auck
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.539-544
    • /
    • 2005
  • An analog CMOS vision chip for edge detection with power consumption below 20mW was designed by adopting electronic switches. An electronic switch separates the edge detection circuit into two parts; one is a logarithmic compression photocircuit, the other is a signal processing circuit for edge detection. The electronic switch controls the connection between the two circuits. When the electronic switch is OFF, it can intercept the current flow through the signal processing circuit and restrict the magnitude of the current flow below several hundred nA. The estimated power consumption of the chip, with $128{\times}128$ pixels, was below 20mW. The vision chip was designed using $0.25{\mu}m$ 1-poly 5-metal standard full custom CMOS process technology.

  • PDF

Design of Analog CMOS Vision Chip for Edge Detection with Low Power Consumption (저전력 아날로그 CMOS 윤곽검출 시각칩의 설계)

  • Kim, Jung-Hwan;Park, Jong-Ho;Suh, Sung-Ho;Lee, Min-Ho;Shin, Jang-Kyoo;Nam, Ki-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.231-240
    • /
    • 2003
  • The problem of power consumption and the limitation of a chip area should be considered when the pixel number of the edge detection circuit increases to fabricate a vision chip for edge detection with high resolution. The numeric increment of the unit circuit causes power consumption to increase and require a larger chip area. An increment of power consumption and a limitation of chip area with several ten milli-meters square supplied by the CMOS foundry company restrict the pixel numbers of the edge detection circuit. In this paper, we proposed a electronic switch to minimize the power consumption owing to the numeric increment of the edge detection circuit to realize a vision chip for edge detection with high resolution. We also applied a method by which photodetector and edge detection circuit are separated to implement a vision chip with a higher resolution. The photodetector circuit with $128{\times}128$ pixels uses a common edge detection circuit with $1{\times}128$ pixels so that resolution was improved at the same chip area. The chip size is $4mm{\times}4mm$ and the power consumption was confirmed to be about 20mW using SPICE.

The Effect of the Consumption Monitoring Inaccuracy by Vision on Kimbab Intake and Satiety Rate (시각에 의한 식이 섭취 모니터링의 부정확성이 김밥 섭취량과 포만도에 미치는 영향)

  • Chang, Un-Jae;Jung, Eun-Young;Suh, Hyung-Joo;Kim, Jin-Man;Hong, In-Sun
    • Korean Journal of Community Nutrition
    • /
    • v.13 no.2
    • /
    • pp.237-243
    • /
    • 2008
  • It was examined whether altering vision would influence food intake through consumption monitoring and whether this would be reflected in consumption estimate and satiety. The experiment was designed in two visibility levels: 1) an accurate visual cue (bowl covered with wrap) vs 2) a biased visual cue (bowl covered with foil). Thirty three female college students participated in this study. The subjects ate Kimbab in the lab once a week for 2 weeks. They were served 24 pieces of Kimbab in a bowl covered either with wrap or foil. The results showed that the actual Kimbab intake from the bowl covered with foil was significantly lower than the test using wrap ($13.4{\pm}3.3$ pieces vs $15.0{\pm}3.8$ pieces, p < 0.05). And there were no significant differences from the cognitive Kimbab intake between the tests with foil and wrap. However, the satiety rate of Kimbab in a bowl covered with foil was significantly higher than that with wrap at 1 hour and 2 hour after the Kimbab eaten (p < 0.05). Less consumed cases were recognized by subjects due to the inaccuracy during the consumption monitoring process. This result revealed that vision influences not only eating behavior but also subjective feelings of satiety after meal. In conclusion, the consumption monitoring by visual cues can play an important role in food intake and satiety rate.

Trends in Low-Power On-Device Vision SW Framework Technology (저전력 온디바이스 비전 SW 프레임워크 기술 동향)

  • Lee, M.S.;Bae, S.Y.;Kim, J.S.;Seok, J.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.56-64
    • /
    • 2021
  • Many computer vision algorithms are computationally expensive and require a lot of computing resources. Recently, owing to machine learning technology and high-performance embedded systems, vision processing applications, such as object detection, face recognition, and visual inspection, are widely used. However, on-devices need to use their resources to handle powerful vision works with low power consumption in heterogeneous environments. Consequently, global manufacturers are trying to lock many developers into their ecosystem, providing integrated low-power chips and dedicated vision libraries. Khronos Group-an international standard organization-has released the OpenVX standard for high-performance/low-power vision processing in heterogeneous on-device systems. This paper describes vision libraries for the embedded systems and presents the OpenVX standard along with related trends for on-device vision system.

Loosely-Coupled Vision/INS Integrated Navigation System

  • Kim, Youngsun;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • Since GPS signals are vulnerable to interference and obstruction, many alternate aiding systems have been proposed to integrate with an inertial navigation system. Among these alternate systems, the vision-aided method has become more attractive due to its benefits in weight, cost and power consumption. This paper proposes a loosely-coupled vision/INS integrated navigation method which can work in GPS-denied environments. The proposed method improves the navigation accuracy by correcting INS navigation and sensor errors using position and attitude outputs of a landmark based vision navigation system. Furthermore, it has advantage to provide redundant navigation output regardless of INS output. Computer simulations and the van tests have been carried out in order to show validity of the proposed method. The results show that the proposed method works well and gives reliable navigation outputs with better performance.

An embedded vision system based on an analog VLSI Optical Flow vision sensor

  • Becanovic, Vlatako;Matsuo, Takayuki;Stocker, Alan A.
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.285-288
    • /
    • 2005
  • We propose a novel programmable miniature vision module based on a custom designed analog VLSI (aVLSI) chip. The vision module consists of the optical flow vision sensor embedded with commercial off-the-shelves digital hardware; in our case is the Intel XScale PXA270 processor enforced with a programmable gate array device. The aVLSI sensor provides gray-scale imager data as well as smooth optical flow estimates, thus each pixel gives a triplet of information that can be continuously read out as three independent images. The particular computational architecture of the custom designed sensor, which is fully parallel and also analog, allows for efficient real-time estimations of the smooth optical flow. The Intel XScale PXA270 controls the sensor read-out and furthermore allows, together with the programmable gate array, for additional higher level processing of the intensity image and optical flow data. It also provides the necessary standard interface such that the module can be easily programmed and integrated into different vision systems, or even form a complete stand-alone vision system itself. The low power consumption, small size and flexible interface of the proposed vision module suggests that it could be particularly well suited as a vision system in an autonomous robotics platform and especially well suited for educational projects in the robotic sciences.

  • PDF

Tool Monitoring System using Vision System with Minimizing External Condition (환경영향을 최소화한 비전 시스템을 이용한 미세공구의 상태 감시 기술)

  • Kim, Sun-Ho;Baek, Woon-Bo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.142-147
    • /
    • 2012
  • Machining tool conditions directly affect to quality of product and productivity of manufacturing. Many researches performed for tool condition monitoring in machining process to improve quality and productivity. Conventional methods use characteristics of signal for cutting force, motor current consumption, vibration of machine tools and machining sound. Recently, diameter of machining tool is become smaller for minimizing of mechanical parts. Tool condition monitoring using conventional methods are relatively difficult because micro machining using small diameter tool has low machining load and high cutting speed. These days, the direct monitoring for tool conditions using vision system is performed actively. But, vision system is affected by external conditions such as back ground of image and illumination. In this study, minimizing technology of external conditions using distribution analysis of image data are developed in micro machining using small diameter drill and tap. The image data is gathered from vision system. Several sets of experiment results are performed to verify the characteristics of the proposed machining technology.

Electronic Circuit Design for Portable Infrared Night Vision Scope (휴대용 적외선 야시경을 위한 전자회로설계)

  • Eom Ki-Hwan;Kim Doo-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.2 s.308
    • /
    • pp.33-39
    • /
    • 2006
  • This paper designed the electronic circuit part of Potable Infrared Night Vision Scope for a small size, light weight, and low power. Designed electronic circuit part is composed of an Auto Voltage Selecting Module, and a Power Supply Module. An Auto Voltage Selecting Modulo is composed of a switch, a battery, a step up voltage part, and a selecting voltage part. A Power Supply Module is composed of a high luminous sensing part, a battery voltage sensing part, a infrared illumination part, a connection sensing part, and a power control part. And this module controls the power of Image Intensifier Tube. To verify the performance of the designed electronic circuit part, we experimented the consumption power and continuous using time. Experimental results show that the designed electronic circuit part improves considerably on the performance of the AN/PVS-14. performance.