• Title/Summary/Keyword: construction operation monitoring

Search Result 199, Processing Time 0.025 seconds

APPLICATION OF USN TECHNOLOGY FOR MONITORING EARTH RETAINING WALL

  • Sungwoo Moon;Eungi Choi;Injoon Kang
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.517-520
    • /
    • 2013
  • In construction operation, the temporary structure is used to support designed facilities or to provide work spaces for construction activities. Since the structure is used only during the construction operation, the operation may be given insufficient attention. The contractor is likely to try to save cost on the material and labor cost. This contractor's behavior frequently leads to construction accidents. In order to prevent accidents from the failure, the operation should be carefully monitored for identifying the effect of dynamics in the surrounding site area. Otherwise, any unexpected adversary effect could result in a very costly construction failure. This study presents the feasibility of the ubiquitous sensor network (USN) technology in collecting construction data during the construction operation of earth retaining walls. The study is based on the result at the Construction System Integration Laboratory (CSIL) at the Pusan National University. A USN-based system has been developed for monitoring the behavior of the temporary structure of earth retaining walls. The data collected from the sensors were used to understand the behavior of the temporary structure. The result of this study will be used in increasing the safety during the construction operation of retaining walls.

  • PDF

OBSERVATION ERROR OF TIME-LAPSED PHOTOS IN CONSTRUCTION OPERATION MONITORING

  • Jiwon Choi;Julian Kang
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.1042-1047
    • /
    • 2005
  • A web-based camera (webcam) is expected to enhance construction operation monitoring. However, webcams are often installed outside a building because their mobility is limited by cable wiring, which makes it difficult to monitor construction operations inside the building. If a webcam is integrated with emerging wireless communication technologies, construction professionals may be able to monitor interior construction operations using webcams without getting network cables wired on a congested and dynamic construction job site. However, one may concern that wireless communication may not be fast enough to transport all webcam images seamlessly. This paper presents an investigation as to the observation error of webcam images when a limited amount of images are delivered.

  • PDF

Anticorrosive Monitoring and Complex Diagnostics of Corrosion-Technical Condition of Main Oil Pipelines in Russia

  • Kosterina, M.;Artemeva, S.;Komarov, M.;Vjunitsky, I.;Pritula, V.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.208-211
    • /
    • 2008
  • Safety operation of main pipelines is primarily provided by anticorrosive monitoring. Anticorrosive monitoring of oil pipeline transportation objects is based on results of complex corrosion inspections, analysis of basic data including design data, definition of a corrosion residual rate and diagnostic of general equipment's technical condition. All the abovementioned arrangements are regulated by normative documents. For diagnostics of corrosion-technical condition of oil pipeline transportation objects one presently uses different methods such as in-line inspection using devices with ultrasonic, magnetic or another detector, acoustic-emission diagnostics, electrometric survey, general external corrosion diagnostics and cameral processing of obtained data. Results of a complex of diagnostics give a possibility: $\cdot$ to arrange a pipeline's sectors according to a degree of corrosion danger; $\cdot$ to check up true condition of pipeline's metal; $\cdot$ to estimate technical condition and working ability of a system of anticorrosive protection. However such a control of corrosion technical condition of a main pipeline creates the appearance of estimation of a true degree of protection of an object if values of protective potential with resistive component are taken into consideration only. So in addition to corrosive technical diagnostics one must define a true residual corrosion rate taking into account protective action of electrochemical protection and true protection of a pipeline one must at times. Realized anticorrosive monitoring enables to take a reasonable decision about further operation of objects according to objects' residual life, variation of operation parameters, repair and dismantlement of objects.

Development of a Workload Index for Monitoring Durability Test of an Excavator (굴착기 내구시험 모니터링을 위한 작업부하 지표 개발)

  • Cho, Jae-Hong;Na, Seon-Jun;Kim, Min-Seok;Park, Myeong-Kwan
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.29-35
    • /
    • 2022
  • In this paper, we developed a workload index for monitoring the durability test using operation information of an excavator. First, the acceleration and cylinder pressure were selected as load factors by analyzing operation data. Through load correlation analysis according to each load factor, Root Mean Square (RMS) and Work Load Range (WLR) were respectively derived as a load feature representing mechanical load. In addition, the workload index was used to quantify load features. For applying the workload index to monitoring, a real-time monitoring system consisting of sensors and embedded controller was installed on the excavator and the system was integrated with a remote monitoring environment using a wireless network. Results of load monitoring and analysis verified that the developed workload index was effective from the viewpoint of the relative comparison of the workload.

Development and application of construction monitoring system for Shanghai Tower

  • Li, Han;Zhang, Qi-Lin;Yang, Bin;Lu, Jia;Hu, Jia
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1019-1039
    • /
    • 2015
  • Shanghai Tower is a composite structure building with a height of 632 m. In order to verify the structural properties and behaviors in construction and operation, a structural health monitoring project was conducted by Tongji University. The monitoring system includes sensor system, data acquisition system and a monitoring software system. Focusing on the health monitoring in construction, this paper introduced the monitoring parameters in construction, the data acquisition strategy and an integration structural health monitoring (SHM) software. The integration software - Structural Monitoring/ Analysis/ Evaluation System (SMAE) is designed based on integration and modular design idea, which includes on-line data acquisition, finite elements and dynamic property analysis functions. With the integration and modular design idea, this SHM system can realize the data exchange and results comparison from on-site monitoring and FEM effectively. The analysis of the monitoring data collected during the process of construction shows that the system works stably, realize data acquirement and analysis effectively, and also provides measured basis for understanding the structural state of the construction. Meanwhile, references are provided for the future automates construction monitoring and implementation of high-rise building structures.

Wireless safety monitoring of a water pipeline construction site using LoRa communication

  • Lee, Sahyeon;Gil, Sang-Kyun;Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.433-446
    • /
    • 2022
  • Despite efforts to reduce unexpected accidents at confined construction sites, choking accidents continue to occur. Because of the poorly ventilated atmosphere, particularly in long, confined underground spaces, workers are subject to dangerous working conditions despite the use of artificial ventilation. Moreover, the traditional monitoring methods of using portable gas detectors place safety inspectors in direct contact with hazardous conditions. In this study, a long-range (LoRa)-based wireless safety monitoring system that features the network organization, fault-tolerant, power management, and a graphical user interface (GUI) was developed for underground construction sites. The LoRa wireless data communication system was adopted to detect hazardous gases and oxygen deficiency within a confined underground space with adjustable communication range and low power consumption. Fault tolerance based on the mapping information of the entire wireless sensor network was particularly implemented to ensure the reliable operation of the monitoring system. Moreover, a sleep mode was implemented for the efficient power management. The GUI was also developed to control the entire safety-monitoring system and to manage the measured data. The developed safety-monitoring system was validated in an indoor testing and at two full-scale water pipeline construction sites.

Lifting Load Recording and Management Method of the Lift for Construction Based Sensing Information

  • Taekyu Ko;Joonghwan Shin;Kyuhyup Lee;Soonwook Kwon;Chung-Suk Cho;Suwan Chung;Goeun ,Choi
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.2
    • /
    • pp.125-135
    • /
    • 2022
  • While buildings in recent days become taller and larger, many problems occur during the management of construction. Particularly, as the vertical movement of manpower and materials during construction has become longer while the lifting frequency and load increase, the need for a good lifting management practice is also increasing. Therefore, this study presents a real-time lifting performance monitoring system that can store and manage lifting records for construction management. Through review of literature and preceding studies related to construction lift, the concept of lift planning and operation management was understood, leading to the development of a system to monitor lifting operation and performance information. This system enabled quick measurement of the lifting performance during construction phase while responding to changes in the project schedule. To verify this system, a case study was conducted in which the current status and characteristics of the sensing-based lifting performance were derived.

Safety Management of the Retaining Wall Using USN Sonar Sensors (USN 초음파 센서를 활용한 흙막이 안전관리)

  • Moon, Sung-Woo;Choi, Eun-Gi;Hyun, Ji-Hun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.22-30
    • /
    • 2011
  • In the construction operation, foundation work should be done in advance for the building structure to be installed. This foundation work include a number of activities such as excavation, ground water prevention, piling, wale installation, etc. Caution should be taken in the operation because the dynamics of earth movement can cause a significant failure in the temporary structure. The temporary structure, therefore, should be constantly monitored to understand its behavior. This paper introduces the USN-based monitoring system to automatically identify the behavior of the temporary structure in addition to visual inspection. The autonomous capability of the monitoring system can increase the safety in the construction operation by providing the detailed structural changes of temporary structures.

Automatic indoor progress monitoring using BIM and computer vision

  • Deng, Yichuan;Hong, Hao;Luo, Han;Deng, Hui
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.252-259
    • /
    • 2017
  • Nowadays, the existing manual method for recording actual progress of the construction site has some drawbacks, such as great reliance on the experience of professional engineers, work-intensive, time consuming and error prone. A method integrating computer vision and BIM(Building Information Modeling) is presented for indoor automatic progress monitoring. The developed method can accurately calculate the engineering quantity of target component in the time-lapse images. Firstly, sample images of on-site target are collected for training the classifier. After the construction images are identified by edge detection and classifier, a voting algorithm based on mathematical geometry and vector operation will divide the target contour. Then, according to the camera calibration principle, the image pixel coordinates are conversed into the real world Coordinate and the real coordinates would be corrected with the help of the geometric information in BIM model. Finally, the actual engineering quantity is calculated.

  • PDF

A long-term tunnel settlement prediction model based on BO-GPBE with SHM data

  • Yang Ding;Yu-Jun Wei;Pei-Sen Xi;Peng-Peng Ang;Zhen Han
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.17-26
    • /
    • 2024
  • The new metro crossing the existing metro will cause the settlement or floating of the existing structures, which will have safety problems for the operation of the existing metro and the construction of the new metro. Therefore, it is necessary to monitor and predict the settlement of the existing metro caused by the construction of the new metro in real time. Considering the complexity and uncertainty of metro settlement, a Gaussian Prior Bayesian Emulator (GPBE) probability prediction model based on Bayesian optimization (BO) is proposed, that is, BO-GPBE. Firstly, the settlement monitoring data are analyzed to get the influence of the new metro on the settlement of the existing metro. Then, five different acquisition functions, that is, expected improvement (EI), expected improvement per second (EIPS), expected improvement per second plus (EIPSP), lower confidence bound (LCB), probability of improvement (PI) are selected to construct BO model, and then BO-GPBE model is established. Finally, three years settlement monitoring data were collected by structural health monitoring (SHM) system installed on Nanjing Metro Line 10 are employed to demonstrate the effectiveness of BO-GPBE for forecasting the settlement.