• Title/Summary/Keyword: construction monitoring sensor

Search Result 268, Processing Time 0.028 seconds

SHM by DOFS in civil engineering: a review

  • Rodriguez, Gerardo;Casas, Joan R.;Villalba, Sergi
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.357-382
    • /
    • 2015
  • This paper provides an overview of the use of different Distributed Optical Fiber Sensor systems (DOFSs) to perform Structural Health Monitoring (SHM) in the specific case of civil engineering structures. Nowadays, there are several methods available for extracting distributed measurements from optical fiber, and their use have to be according with the aims of the SHM performance. The continuous-in-space data is the common advantage of the different DOFSs over other conventional health monitoring systems and, depending on the particular characteristics of each DOFS, a global and/or local health structural evaluation is possible with different accuracy. Firstly, the fundamentals of different DOFSs and their principal advantages and disadvantages are presented. Then, laboratory and field tests using different DOFSs systems to measure strain in structural elements and civil structures are presented and discussed. Finally, based on the current applications, conclusions and future trends of DOFSs in SHM in civil structures are proposed.

A Study on HVDC Underwater Cable Monitoring Technology Based on Distributed Fiber Optic Acoustic Sensors (분포형 광섬유 음향 센서 기반 HVDC 해저케이블 모니터링 기술 연구)

  • Youngkuk Choi;Hyoyoung Jung;Huioon Kim;Myoung Jin Kim;Hee-Woon Kang;Young Ho Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study presents a novel monitoring technique for underwater high-voltage direct current (HVDC) cables based on the Distributed Acoustic Sensor (DAS). The proposed technique utilizes vibration and acoustic signals generated on HVDC cables to monitor their condition and detect events such as earthquakes, shipments, tidal currents, and construction activities. To implement the monitoring system, a DAS based on phase-sensitive optical time-domain reflectometry (Φ-OTDR) system was designed, fabricated, and validated for performance. For the HVDC cable monitoring experiments, a testbed was constructed on land, mimicking the cable burial method and protective equipment used underwater. Defined various scenarios that could cause cable damage and conducted experiments accordingly. The developed DAS system achieved a maximum measurement distance of 50 km, a distance measurement interval of 2 m, and a measurement repetition rate of 1 kHz. Extensive experiments conducted on HVDC cables and protective facilities demonstrated the practical potential of the DAS system for monitoring underwater and underground areas.

Development of Construction Site Safety Monitoring System based on the USN

  • Ahn, Jeong-Kil;Kim, Dong-Hyeon;Lee, Yang-Sun;Kim, Ji-Woong;Cho, Sung-Eeon;Cho, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.565-569
    • /
    • 2009
  • This paper proposed the safety helmet monitoring system based on USN(Ubiquitous Sensor Networks) to secure the wear of helmet for labor on the construction area. As one of the most significant gear to assure labor's safety, The safety helmet would have the extend of labor's injuries minimized whether one wears or not when an accident takes place. At this point, we have developed and demonstrated the system which is able to check who wear the safety helmet properly for labors, composed of safety helmets with sensor node, router nodes, sink node and management program. Moreover, we could show optimized parameters for the proposed USN system as doing experiment and demonstration, we expected that this system would make for labor wear the safety helmet properly on the construction area as well as prevent economic injury caused by an accident with not wearing for labors.

Monitoring of Early-age Behavior of Concrete Retaining Wall by FBG Sensors (FBG센서를 이용한 콘크리트옹벽 초기재령 특성 모니터링 연구)

  • Jang, Il-Young;Yun, Ying-Wei;Kim, Young-Gune
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.89-90
    • /
    • 2009
  • FBG temperature sensor and strain sensor has been used to monitoring shrinkage and temperature of concrete retaining wall in construction site in its casting early age. The test results indicate that this monitoring method is a practical method for monitoring concrete at very early age. The monitoring technique used in this research could be extended to monitor shrinkage and temperature for mass concrete structure.

  • PDF

Application on the New Technology of Construction Structures Disaster Protection Management based on Spatial Information

  • Yeon, Sangho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.136-145
    • /
    • 2018
  • The disaster monitoring technique by combination of the measurement method and the fine precision of the sensor collecting the satellite-based information that can determine the displacement space is available in a variety of diagnostic information and the GIS/GNSS by first sensor it is being requested from them. Be large and that the facility is operated nationally distributed torsional displacement of the terrain and facilities caused by such natural disasters progress of various environmental factors and the surroundings. To diagnose this spatial information, which contains the various sensors and instruments tracks the precise fine displacement of the main construction structures and the first reference in the Geospatial or more three-dimensional detailed available map and location information using the installed or the like bridges and tunnels produced to a USN/IoT change at any time, by combining the various positioning analysis of mm-class for the facility main area observed is required to constantly in the real time information of the USN/IoT environment sensor, and to utilize this as a precise fine positioning information by UAV/Drone to the precise fine displacement of the semi-permanent infrastructures. It managed to be efficient management by use of new technologies, analyzing the results presented to a method capable of real-time monitoring for a large structure or facility to construction disaster prevention.

Monitoring System For The Subway Structures Using Prestrained FBG Sensors Fixed With Partially Stripped Fibers (부분탈피 고정방식 프리스트레인 가변형 광섬유격자센서를 이용한 지하철 구조물 변위 모니터링시스템)

  • Kim, Ki-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.607-613
    • /
    • 2008
  • A monitoring system for the subway structures using prestrained FBG sensors fixed with partially stripped fibers was developed. The sensor packages had pre-strain controllable fixtures. Tensile and compressive strain of the structure could be measured without slip. The FBG sensor system was applied to the concrete lining structure in Taegu subway. Near the structure, the narrow tunnel construction, for the electric power cables and telecommunication cables, started. We wanted to measure the deformations of the subway structures due to the construction by the FBG sensor. The applied sensors had the gauge length of 1 meter to overcome the inhomogeneity of the concrete material with enough length. In order to fix tightly to the structure, the partially stripped parts of the sensor glued to the package and slip phenomenon between fiber and acrylate jacket was prevented. Prestrain of the sensor was imposed by controlling the two fixed points with bolts and nuts in order to measure compressive strain as well as tensile strain. The behavior of subway lining structure could be monitored very well.

Corrosion Monitoring Technology of Rebar in Reinforced Concrete Structures (철근콘크리트 구조물의 철근부식 모니터링 기술)

  • Kwon, Seong-Junn;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.258-259
    • /
    • 2019
  • Corrosion of rebar in RC structures, which results in premature deterioration of reinforced concrete structures, is a very serious problem. Most corrosion monitoring and sensing technologies require some type of wired or wireless connection between the sensor and monitoring electronics. This causes significant problems in their installation and long-term use. In this paper we describe a corrosion monitoring technology of rebar in reinforced concrete structures. Especially, it is emphasize that the development of sensors and monitoring system not only occurrence of rebar corrosion but also penetration of deterioration factor such like chloride ion and carbon dioxite etc..

  • PDF

WSN Safety Monitoring using RSSI-based Ranging Technique in a Construction Site (무선센서 네트워크를 이용한 건설현장 안전관리 모니터링 시스템)

  • Jang, Won-Suk;Shin, Do Hyoung
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.2
    • /
    • pp.49-54
    • /
    • 2009
  • High incident of accidents in construction jobsite became a social problem. According to the International Labour Organization (ILO), more than 60,000 fatal accidents occur each year in construction workplace worldwide. This number of accidents accounts for about 17 percent of all fatal workplace accidents. Especially, accidents from struck-by and falls comprise of over 60 percent of construction fatalities. This paper introduces a prototype of a received signal strength index (RSSI)-based safety monitoring to mitigate the potential accidents caused by falls and struck-by. Correlation between signal strength and noise index is examined to create the distance profile between a transmitter and a receiver. Throughout the distributed sensor nodes attached on potential hazardous objects, the proposed prototype envisions that construction workers with a tracker-tag can identify and monitor their current working environment in construction workplace, and early warning system can reduce the incidents of fatal accident in construction job site.

  • PDF

Beam deflection measurement using coordinate sensor system (좌표측정 센서시스템을 이용한 실험용 보의 처짐 계측)

  • Noh, Tae-Sung;Rhim, Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.300-301
    • /
    • 2014
  • Measurement of beam deflection is a common procedure to determine proper behavior of the structure. Either LVDT (Linear Variable Displacement Transformer) or strain gauge is usually used in experiments. A newly developed coordinate reading measurement system can be also applied for the deflection measurements. In this study, an experimental measurement was made on a laboratory size beam specimen to examine the possibility of the use of such coordinate measurement system. Results have shown the possibility of utilizing the new system for beam deflection measurement.

  • PDF

Crack detection study for hydraulic concrete using PPP-BOTDA

  • Huang, Xiaofei;Yang, Meng;Feng, Longlong;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Cao, Wenhan
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.75-83
    • /
    • 2017
  • Effectively monitoring the concrete cracks is an urgent question to be solved in the structural safety monitoring while cracks in hydraulic concrete structures are ubiquitous. In this paper, two experiments are designed based on the measuring principle of Pulse-Pre pump Brillouin Optical Time Domain Analysis (PPP-BOTDA) utilizing Brillouin optical fiber sensor to monitor concrete cracks. More specifically, "V" shaped optical fiber sensor is proposed to determine the position of the initial crack and the experiment illustrates that the concrete crack position can be located by the mutation position of optical fiber strain. Further, Brillouin distributed optical fiber sensor and preinstall cracks are set at different angles and loads until the optical fiber is fractured. Through the monitoring data, it can be concluded that the variation law of optical fiber strain can basically reflect the propagation trend of the cracks in hydraulic concrete structures.