• Title/Summary/Keyword: construction loads

Search Result 1,135, Processing Time 0.025 seconds

2D and 3D numerical analysis on strut responses due to one-strut failure

  • Zhang, Wengang;Zhang, Runhong;Fu, Yinrong;Goh, A.T.C.;Zhang, Fan
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.965-972
    • /
    • 2018
  • In deep braced excavations, struts and walers play an essential role in the whole supporting system. For multi-level strut systems, accidental strut failure is possible. Once a single strut fails, it is possible for the loads carried from the previous failed strut to be transferred to the adjacent struts and therefore cause one or more struts to fail. Consequently, progressive collapse may occur and cause the whole excavation system to fail. One of the reasons for the Nicoll Highway Collapse was attributed to the failure of the struts and walers. Consequently, for the design of braced excavation systems in Singapore, one of the requirements by the building authorities is to perform one-strut failure analyses, in order to ensure that there is no progressive collapse when one strut was damaged due to a construction accident. Therefore, plane strain 2D and three-dimensional (3D) finite element analyses of one-strut failure of the braced excavation system were carried out in this study to investigate the effects of one-strut failure on the adjacent struts.

Compression strength performance of multi-layer glued columns by using square lumbers produced from domestic small diameter logs (국산 간벌 소경재를 이용한 다중접착접합 기둥부재의 압축강도성능)

  • Shin, Il-Joong;Kim, Yun-Hui;Jang, Sang-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.533-540
    • /
    • 2011
  • This study is to develop a mulit-layer glued columns for construction of Korean-style houses by using domestic small diameter logs. Dried small square lumber glued each other to develop a multi-layer glued columns and evaluated its performance of strength. Then, predicted the design load of multi-layer glued columns and make a comparison between actual load and design load of multi-layer glued columns. In the results, allowable load by allowable stress of multi-layer glued columns was measured one-third of actual columns load and prediction load was measured less than 10~30% of the actual load. Therefore, muilt-layer glued member has a standard allowable stress of compressive of 13 MPa (Larix leptolepis) and 19 MPa (Chamaecyparis obtusa) when used as columns. Also, using compression strength of small diameter square logs could calculate maximum loads of multi-layer glued member as column.

The Simulation and Experimental Study on the Bridge Response of AGT Bridge - Vehicle interaction System (AGT 시스템 교량-차량 상호작용에 의한 교량응답 시뮬레이션 및 실험)

  • Na, Sang-Ju;Kim, Ki-Bong;Song, Jae-Pil;Kim, Hyun-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.395-400
    • /
    • 2007
  • LRT(Light Railway Train), which is a intermediate system of train and bus, is arose for the solution of subway construction cost and the transportation capacity of bus. LRT was introduced in 1980's. About 30 local governments are plan to introduce LRT or constructing LRT, at present. AGT(Automated Guide-way Transit) system, which is a kind of LRT, is operated without driver. Rubber wheeled AGT system can reduce the noise and vibration compare to steel wheeled AGT, so it is estimated as ideal transportation system for urban area. And live loads at bridge are classified as the static load of vehicle and the dynamic wheel contact load which is occurred from the interaction of bridge and vehicle vibration, and the surface roughness. In the case of AGT system, the dynamic increment factor of bridge is greater than the normal train bridge and roadway bridge, because, the weight of AGT vehicle is more light that the train of truck. The exact method for dynamic increment factor is experiment. But this method is needed much money and time, moreover, this method cannot be adopted in design. Therefore, a simulation program for the interaction of AGT bridge, vehicle and surface roughness was developed, in this study. And the program was verified by experiment. As a result, the accuracy of the simulation program can be verified.

  • PDF

Development of the DB-Based Energy Demand Prediction System Urban Community Energy Planning (광역도시 에너지계획단계에서의 DB기반 에너지수요예측 시스템 개발)

  • Kong, Dong-Seok;Lee, Sang-Mun;Lee, Byung-Jeong;Huh, Jung-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.940-945
    • /
    • 2009
  • Energy planning for hybrid energy system is important to increase the flexibility in the urban community and national energy systems. Expected maximum loads, load profiles and yearly energy demands are important input parameters to plan for the technical and environmental optimal energy system for a planning area. The method for energy demand prediction has been based on artificial neural networks(ANN). The advantage of ANN with respect to the other method is their ability of modeling a multivariable problem given by the complex relationships between the variables. This method can produce 10% of errors hourly load profile from individual building to urban community. As the results of this paper, energy demand prediction system has been developed based on simulink.

  • PDF

A Study of Axial Eccentricity Strength of High Strength Concrete Thin Walls for Internet of Things (사물인터넷 구현을 위한 고강도 콘크리트 박막벽체의 극한 편심하중 강도에 관한 연구)

  • Oh, Soontaek;Lee, Dongjun;Kim, Yeonsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Recently, a high strength concrete(HSC) in excess of 80 MPa is popular to use in the domestic construction field. But there is no design standard of high strength concrete. It is reason why a study about structural behaviors of thin walls is required. In this paper, the accurate Finite Element Method as a virtual test is suggested considering material properties, which are concrete and steel, and the experimental fractural model suggested by Kupfer. It is conducted the comparison evaluation of the ultimate failure loads, lateral-displacements and crack propagation patterns between the results of experimental approach, which were carried on Saheb's test for normal strength concrete and Lee's test for high strength concrete. Therefore it is suggested to use the accurate virtual simulation test method and Ubiquitous Sensor Network(USN) by Finite Element Method for Internet of Things(IoT).

Manufacturing 2.25Cr-1Mo Steel In Hot Rolling Strip Mill (2.25% Cr-1%Mo 합금계 열연강판 제조기술)

  • 노태훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.390-398
    • /
    • 1999
  • The thermomechanical control process(in hot rolling strip mill) was employed to produce 2.25Cr-1Mo steel, which is to be construction material for the steam generator for power plant. Although the Conventional processes has been the primary means of producing the 2.25Cr-1Mo steel, an alternative method was used to meet the specification of ASTM heat treatment for A387-22-Classl using autotempering after coiling in hot rolling strip mill. The microstructures, tensile properties at various temperatures, and creep-rupture properties have been investigated to compare the properties with those of materials produced by the conventional process and to certify the application of the thermomechanical control process to an actual process of manufacturing 2.25-Cr-1Mo steel, this in turn, will reduce the cost of the process. About 14 to 34% glanular bainite (remainder proetectoid ferrite) formed in a coil, and this variety of volume fraction stems from the different cooling rates, which varies with position of the coil after coiling. Tensile testing from room temperature to 700$^{\circ}C$ indicated that strength increases with test temperature showing peaks at around 600$^{\circ}C$. Creep-rupture properties have been being investigated at the temperature of 500$^{\circ}C$ with 27.5, 32kg/$\textrm{mm}^2$ loads and have showed no rupture for over 1000 hours.

  • PDF

Seismic risk assessment of deficient reinforced concrete frames in near-fault regions

  • Cao, Vui Van;Ronagh, Hamid Reza;Baji, Hassan
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.261-280
    • /
    • 2014
  • In many parts of the world, reinforced concrete (RC) buildings, designed and built in accordance with older codes, have suffered severe damage or even collapse as a result of recent near-fault earthquakes. This is particularly due to the deficiencies of most of the older (and even some of the recent) codes in dealing with near fault events. In this study, a tested three-storey frame designed for gravity loads only was selected to represent those deficient buildings. Nonlinear time history analyses were performed, followed by damage assessment procedures. The results were compared with experimental observation of the same frame showing a good match. Damage and fragility analyses of the frame subjected to 204 pulse-type motions were then performed using a selected damage model and inter-storey drifts. The results showed that the frame located in near-fault regions is extremely vulnerable to ground motions. The results also showed that the damage model better captures the damage distribution in the frame than inter-storey drifts. The first storey was identified as the most fragile and the inner columns of the first storey suffered most damage as indicated by the damage index. The findings would be helpful in the decision making process prior to the strengthening of buildings in near-fault regions.

Experimental and analytical investigation on RC columns with distributed-steel bar

  • Ye, Mao;Pi, Yinpei;Ren, Min
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.741-756
    • /
    • 2013
  • Distributed-Steel Bar Reinforced Concrete (DSBRC) columns, a new and innovative construction technique for composite steel and concrete material which can alleviate the difficulty in the arrangement of the stirrup in the column, were studied experimentally and analytically in this paper. In addition, an ordinary steel Reinforced Concrete (SRC) column was also tested for comparison purpose. The specimens were subjected to quasi-static load reversals to model the earthquake effect. The experimental results including the hysteresis curve, resistance recession, skeleton curves and ductility ratio of columns were obtained, which showed well resistant-seismic behavior for DSBRC column. Meanwhile a numerical three-dimensional nonlinear finite-element (FE) analysis on its mechanical behavior was also carried out. The numerically analyzed results were then compared to the experimental results for validation. The parametric studies and investigation about the effects of several critical factors on the seismic behavior of the DSBRC column were also conducted, which include axial compression ratios, steel ratio, concrete strength and yield strength of steel bar.

Structural Analysis for the Determination of Design Variables of Spent Nuclear Fuel Disposal Canister

  • Youngjoo Kwon;Shinuk Kang;Park, Jongwon;Chulhyung Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.327-338
    • /
    • 2001
  • This paper presents the results of a structural analysis to determine design variables such as the inner basket array type, and thicknesses of the outer shell, and lid and bottom of a spent nuclear fuel disposal canister. The canister construction type introduced here is a solid structure with a cast iron insert and a corrosion resistant overpack, which is designed for the spent nuclear fuel disposal in a deep repository in the crystalline bedrock, entailing an evenly distributed load of hydrostatic pressure from the groundwater and high swelling pressure from the bentonite buffer. Hence, the canister must be designed to withstand these high pressure loads. Many design variables may affect the structural strength of the canister. In this study, among those variables, the array type of inner baskets and thicknesses of outer shell and lid and bottom are attempted to be determined through a linear structural analysis. Canister types studied hear are one for the pressurized water reactor (PWR) fuel and another for the Canadian deuterium and uranium reactor (CANDU) fuel.

  • PDF

Porous concrete with optimum fine aggregate and fibre for improved strength

  • Karanth, Savithri S.;Kumar, U. Lohith;Danigond, Naveen
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.305-309
    • /
    • 2019
  • Pervious concrete pavements are the need of the day to avoid urban flooding and to facilitate ground water recharge. However, the strength of pervious or porous concrete is considerably less compared to conventional concrete. In this experimental investigation, an effort is made to improve the strength of pervious concrete by adopting fibres and a small amount of fine aggregate. A porous concrete with cement to aggregate ratio of 1:5 and a water-powder ratio of 0.4 is adopted. 30% of the cement is replaced by cementitious material ground granulated blast furnace slag (GGBS) for better strength and workability. Recron fibres at a dosage of 0.5, 1.0 and 1.5% by weight of cement were included to improve the impact strength. Since concrete pavements are subjected to impact loads, the impact strength was also calculated by "Drop ball method" in addition to compressive strength. The effect of fine aggregate and recron fibres on workability, porosity, compressive and impact strength was studied. The investigations have shown that 20% inclusion of fine aggregate and 1.5% recron fibres by weight of cement give better strength with an acceptable range of porosity.