• Title/Summary/Keyword: construction loads

Search Result 1,135, Processing Time 0.026 seconds

Network separation construction method using network virtualization (네트워크 가상화를 이용한 망 분리 구축 방법)

  • Hwang, Seong-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1071-1076
    • /
    • 2020
  • The importance of network separation is due to the use of the Internet with existing business PCs, resulting in an internal information leakage event, and an environment configured to allow servers to access the Internet, which causes service failures with malicious code. In order to overcome this problem, it is necessary to use network virtualization to separate networks and network interconnection systems. Therefore, in this study, the construction area was constructed into the network area for the Internet and the server farm area for the virtualization system, and then classified and constructed into the security system area and the data link system area between networks. In order to prove the excellence of the proposed method, a network separation construction study using network virtualization was conducted based on the basis of VM Density's conservative estimates of program loads and LOBs.

Estimation of Adequate Capacity of Ground Source Heat Pump in Energy-saving Pig Farms Using Building Energy Simulation (BES를 사용한 에너지 절감형 양돈장의 지열히트펌프 적정 용량 산정)

  • Lee, Seong-Won;Oh, Byung-Wook;Park, Kwang-Woo;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • In Korea, attention is being paid to the use of renewable energy in the livestock industry, and Ground Source Heat Pump (GSHP), which is advantageous for temperature control, is considered as one of the ways to reduce the use of fossil fuels. But GSHP is expensive to install, which proper capacity calculation is required. GSHP capacity is related to its maximum energy load. Energy loads are affected by climate characteristics and time, so dynamic analysis is required. In this study, the optimal capacity of GSHP was calculated by calculating the heating and cooling load of pig farms using BES (Building Energy Simulation) and economic analysis was performed. After designing the inside of the pig house using TRNSYS, one of the commercial programs of the BES technique, the energy load was calculated based on meteorological data. Through the calculated energy load, three heating devices and GSHP used in pig farms were analyzed for economic feasibility. As a result, GSHP's total cost of ownership was the cheapest, but the installation cost was the highest. In order to reduce the initial cost of GSHP, the capacity of GSHP was divided, and a scenario was created in which some of it was used as an auxiliary heating device, and economic analysis was conducted. In this study, a method to calculate the proper capacity of GSHP through dynamic energy analysis was proposed, and it can be used as data necessary to expand the spread of GSHP.

A Vision-based Pipe Support Displacement Measurement Method Using Moire Patterns (모아레 현상을 이용한 영상기반 파이프 서포트 변위측정 방법)

  • Park, Junbeom;Park, Semi;Kim, Jaehyeon;Kim, Jungyeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • It is very important to measure the displacement of a structure to evaluate the safety of the structure. This study shows a methodology to measure the displacement to determine the stability of a structure when it is damaged by loads. The methodology used Moiré's phenomenon and was verified through experiments. The experiments utilized pipes to simulate the pipe supports in the construction site and measured the vertical displacement of the Moiré interference patterns according to the horizontal displacement of the pipes. Experiments confirmed that the linear relationship between horizontal displacement of pipes and vertical displacement of Moiré patterns and derive a relational expression. In conclusion, the methodology presented in this work allows us to simultaneously measure a number of vertical members' displacements regardless of distance and determine the safety of the structure.

A Model Test of Earth Retention System with Prestressed Wale (프리스트레스트 띠장을 적용한 흙막이 시스템의 모형 시험)

  • Park, Jong-Sik;Kim, Sung-Kyu;Joo, Yong-Sun;Jang, Ho-June;Kim, Nak-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.27-36
    • /
    • 2007
  • A model test was performed to evaluate the stability of a new earth retention system with a prestressed wale. For the model test, the dimensional analysis of a full-scaled earth retention system with prestressed wales was performed. Details of the dimensional analysis of the new earth retention system were presented in this paper. Based on the results of the dimensional analysis, the model-scaled earth retention system with a prestressed wale was simulated. The lateral earth pressures on the wall, the lateral deflection of the prestressed wale, the sectional force on members of the prestressed wale system, and the loads of struts were measured during construction simulation. The measured results were evaluated and compared with those of the design criterion. From the measurements, the behavior of this earth retention system was investigated.

Erection Capability of Heavy Precast Frames with Metal Plates using Wet Concrete for Tolerance (톨러런스기반 플레이트 접합 장치를 사용한 고중량 RC보의 설치 성능)

  • Hong, Won-Kee;Nguyen, Van Tien;Nguyen, Manh Cuong;Nkundimana, Eric
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.12-13
    • /
    • 2021
  • Methods for the manufacture, erection, and assembly of heavy frame modules were proposed. Interferences among precast members were prevented by using bolted metal plates for dry precast beam-to-column joints during assembly with a clearance for tolerance implementing grouted concrete filler plates instead of metal filler plates. Clearances for tolerances were provided to avoid conflictions among components during erection phases. These gaps were, then, grouted by high-strength mortar. The constructability of new connections of a beam-to-column joint using bolted metal plates for precast structures was examined using a full-scale assembly test in which practical observations indicated that members could be aligned and placed accurately in both horizontal and vertical directions, leading to a fast and convenient assembling. Bolt holes of the endplate were properly aligned using couplers with 30 mm fastened length embedded in the columns. The assembly test demonstrated the erection safety and structural stability of the proposed joints that were without filler plates when they were subjected to heavy loads at the time of their erection. The facile and rapid assembly of precast beam-to-column connections with a 30 mm tolerance was observed. The proposed assembly method is rapid, sustainable, and resilient, replacing the conventional methods of concrete frame construction, offering a connection that can be used in constructing infrastructure, such as buildings and pipe-rack frames.

  • PDF

Experimental Studies on PSC Airpit-Slab with Fire Resistance Panel under Static and Dynamic Loads (내화패널이 부착된 프리캐스트 PSC 풍도슬래브의 정적/동적하중에 관한 실험연구)

  • Kim, Tae Kyun;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.245-253
    • /
    • 2012
  • In the longway tunnel and underground traffic road, the structure of transverse ventilation system is constructed by the airpit slab. In this study, the full scale specimens of the PSC airpit slab that attached fire resistance panel are performed the static and dynamic loading tests for evaluation of bending capacity. The first of all, it confirmed the evaluations about the fundamental efficiency of the fire resistance panel and PSC slab by the 3-point bending test and pull-off test. The tests are performed for evaluation of the bending resistance under ultimate static load and the bonded capacity under dynamic fatigue load. A fatigue test is performed for an investigation of the effect on wind pressure that is developed by transit of traffic. The damage or debonding on surface between fire resistance panel and PSC slab was not developed in dynamic fatigue load test, also the behavior of the specimens is very stable and the debonding of the fire resistance panel attached at the bottom surface of PSC slab was not developed in static load test, too. Therefore, the crack or debonding of the fire resistance panel will be not developed by external loads during the construction or completion of the precast fire resistance system.

Large eddy simulation of wind loads on a long-span spatial lattice roof

  • Li, Chao;Li, Q.S.;Huang, S.H.;Fu, J.Y.;Xiao, Y.Q.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.57-82
    • /
    • 2010
  • The 486m-long roof of Shenzhen Citizens Centre is one of the world's longest spatial lattice roof structures. A comprehensive numerical study of wind effects on the long-span structure is presented in this paper. The discretizing and synthesizing of random flow generation technique (DSRFG) recently proposed by two of the authors (Huang and Li 2008) was adopted to produce a spatially correlated turbulent inflow field for the simulation study. The distributions and characteristics of wind loads on the roof were numerically evaluated by Computational Fluid Dynamics (CFD) methods, in which Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes Equations (RANS) Model were employed. The main objective of this study is to explore a useful approach for estimations of wind effects on complex curved roof by CFD techniques. In parallel with the numerical investigation, simultaneous pressure measurements on the entire roof were made in a boundary layer wind tunnel to determine mean, fluctuating and peak pressure coefficient distributions, and spectra, spatial correlation coefficients and probability characteristics of pressure fluctuations. Numerical results were then compared with these experimentally determined data for validating the numerical methods. The comparative study demonstrated that the LES integrated with the DSRFG technique could provide satisfactory prediction of wind effects on the long-span roof with complex shape, especially on separation zones along leading eaves where the worst negative wind-induced pressures commonly occur. The recommended LES and inflow turbulence generation technique as well as associated numerical treatments are useful for structural engineers to assess wind effects on a long-span roof at its design stage.

Wall Displacement of Geosynthetic Reinforced Soil Walls with Different Surcharge Loads - Model Test (상재하중 변화에 따른 토목섬유 보강토옹벽의 벽체변위)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.41-47
    • /
    • 2008
  • This paper describes the results of model experiments in the laboratory, which were conducted to assess the behavior characteristics of geosynthetic reinforced soil walls according to different surcharge loads and reinforcement types. The model walls were built in the box having dimension, 100 cm tall, 140 cm long, and 100cm wide. Three types of geosynthetics, geonet, geogrid A and geogrid B, are used as the reinforcements. Decomposed granite soil (SM) was used as a backfill material. Seven model walls are constructed and tested. After the construction of the model wall, the LVDTs are installed to obtain the displacements of the wall face. As the results of the model tests, the maximum horizontal displacements of the model walls occurred due to uniform surcharge pressure were measured at the 0.7H from the bottom of the wall. The more the reinforcement strength increases, the more the wall displacements decrease, and also the reduction ratio of the wall displacement decrease with increasing the surcharge pressure.

  • PDF

Bond Characteristics of High-Strength Concrete (고장도 콘크리트의 부착특성에 관한 연구)

  • Lee, Joon-Gu;Mun, In;Yum, Hwan-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.499-506
    • /
    • 2001
  • Eight direct tension tests were conducted to study the bond characteristics and crack behavior in high-strength concrete axial members. The main variable was the concrete strength up to 61-63 MPa. The specimens consisted of two different types of the short specimens modeled the part between transverse cracks and the long specimens having numerous transverse cracks. The results obtained show that the bond strength increases in proportion to compressive strength. Thereby, in high-strength concrete the length of stress-disturbed region is shortened and the space of adjacent transverse cracks become smaller. Although the concrete strength varies from 25 MPa to 61 MPa, the split cracking loads remain constant, while transverse cracking loads vary as variation of concrete tensile strength. Accordingly, the current code provisions for development length may need reconsideration in high-strength concrete members, and it is recommended that either thicker cover or transverse reinforcement should be additionally provided for high-strength concrete members.

Flexural Behaviors of Precast Prestressed Rectangular and Inverted-tee Concrete Beams for Buildings

  • Yu, Sung-Yong
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • Flexural behaviors of the two typical precast beam sections (inverted tee and rectangular) for buildings were investigated and compared. The height of web in the inverted tee beam was generally less than half of beam depth to be adapted to that of the nib in the ends of double-tee where the total building height limited considerably. The inverted-tee beams were designed for a parking live load - 500kgf/$m^2$ and a market - 1,200kgf/$m^2$ from the currently used typical shape of a domestic building site in Korea. The area and bottom dimension of rectangular beams were the same as those of inverted tee beams. These woo beams were also reinforced with a similar strength. following results were obtained from the studies above; 1) the rectangular beam is simpler in production, transportation, and erection, and more economic than the inverted tee beam in the construction test for these two beams with a same dimension and a similar strength, 2) all of the beams considered in the tests were generally failed in values close to those of the strength requirements in ACI Provisions. The ratios of test result to calculated value are averaged to 1.04. One rectangular and one inverted tee beams failed in a value only 2-3% larger than the estimated volue of the Strength Design Methool the results of the Strain Compatibility Method wire slightly more accurate than those of the Strength Design Method, 4) the maximum deflections of all of the beams under the full service loads were less than those of the allowable limit in ACI Code Provisions. The rectangular beams experienced more deflection then inverted tee in the same loading condition and failed with more deflection, and 5) the rectangular and inverted tee beams showed good performances under the condition of service and ultimate loads. However, one inverted tee beams with fm span developed an initial flexural crackings under 88% of the full service load even though they designed to satisfy the ACI tensile stress limit provisions.

  • PDF