• Title/Summary/Keyword: construction loads

Search Result 1,135, Processing Time 0.022 seconds

A Study of Cooling and Heating Load Changes with Roof Type Solar Panels Installed on Factory Roof (지붕형 태양광발전 패널의 공장 지붕 설치에 따른 냉방 및 난방 부하 변화량 연구)

  • Jo, Ho-Hyeon;Kim, Jung-Min;Kim, Young Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2020
  • In this study, effect of reinforced insulation on heating and cooling loads were studied due to installation of PV panels on factory building roof with a floor area of 12,960 m2. For PV panel installation, combination of aluminum, polyurethane, air, polystyrene and steel materials were added to the original roof, which increased thermal insulation performance. Half of the roof were covered with PV panel and the other half without. Temperature and relative humidity were measured for 8 days during summer season for both indoor spaces. PV panel showed the effect of lowering the indoor space temperature by 0.6℃. TRNSYS dynamic simulation showed that with PV panel, cooling load per area is reduced by 1.7 W/m2 and heating by 10.0 W/m2. PV panels installed on building roof not only generate electricity but also can save energy by reducing cooling and heating loads.

Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using super-elastic SMA stitches

  • Soltanieh, Ghazaleh;Yam, Michael CH.;Zhang, Jing-Zhou;Ke, Ke
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.39-50
    • /
    • 2022
  • Layer separation (delamination) is an essential threat to fiber-reinforced polymer (FRP) plates under dynamic, static, and fatigue loads. Under compressive load, the growth of delamination will lead to structural instability. The aim of this paper is to present a method using shape memory alloy (SMA) stitches to suppress the delamination growth in a FRP plate and to improve the buckling behavior of the plate with a rectangular hole. The present paper is divided into two parts. Firstly, a closed-form (CF) formulation for evaluating the buckling load of the FRP plate is presented. Secondly, the finite element method (FEM) will be employed to calculate the buckling loads of the plates which serves to validate the results obtained from the closed-form method. The novelty of this work is the development of the closed-form solution using the p-Ritz energy approach regarding the stress-dependent phase transformation of SMA to trace the equilibrium path. For the FEM, the Lagoudas constitutive model of the SMA material is implemented in FORTRAN programming language using a user material subroutines (VUMAT). The model is simulated in ABAQUS/Explicit solver due to the nature of the loading type. The cohesive zone model (CZM) is applied to simulate the delamination growth.

Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization

  • Khajehzadeh, Mohammad;Kalhor, Amir;Tehrani, Mehran Soltani;Jebeli, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.93-102
    • /
    • 2022
  • The optimum design of reinforced concrete cantilever retaining walls subjected to seismic loads is an extremely important challenge in structural and geotechnical engineering, especially in seismic zones. This study proposes an adaptive sperm swarm optimization algorithm (ASSO) for economic design of retaining structure under static and seismic loading. The proposed ASSO algorithm utilizes a time-varying velocity damping factor to provide a fine balance between the explorative and exploitative behavior of the original method. In addition, the new method considers a reasonable velocity limitation to avoid the divergence of the sperm movement. The proposed algorithm is benchmarked with a set of test functions and the results are compared with the standard sperm swarm optimization (SSO) and some other robust metaheuristic from the literature. For seismic optimization of retaining structures, Mononobe-Okabe method is employed for dynamic loading conditions and total construction cost of the structure is considered as the single objective function. The optimization constraints include both geotechnical and structural restrictions and the design variables are the geometrical dimensions of the wall and the amount of steel reinforcement. Finally, optimization of two benchmark retaining structures under static and seismic loads using the ASSO algorithm is presented. According to the numerical results, the ASSO may provide better optimal solutions, and the designs obtained by ASSO have a lower cost by up to 20% compared with some other methods from the literature.

Seismic Response Evaluation of PSCI Girder Bridges Considering Stiffness Variation in Elastic Bearings (탄성받침의 강성 변동을 고려한 PSCI 거더 교량의 지진 응답 평가)

  • Yoon, Hyejin;Cho, Chang-Beck;Kim, Young-Jin;Kang, Jun Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.187-192
    • /
    • 2023
  • An elastic bearing must be strong against vertical loads and flexible against horizontal loads. However, due to the material characteristics of rubber, it may show variability due to the manufacturing process and environmental factors. If the value applied in the bridge design stage and the actual measured value have different values or if the performance during operation changes, the performance required in the design stage may not be achieved. In this paper, the seismic response of bridges was compared and analyzed by assuming a case where quality deviation occurs during construction compared to the design value for elastic bearings, which have not only always served as traditional bearings but also have had many applications in recent seismic reinforcement. The bearing's vertical stiffness and shear stiffness deviation were considered separately for the quality deviation. In order to investigate the seismic response, a time history analysis was performed using artificial seismic waves. The results confirmed that the change in the bearing's shear stiffness affects the natural period and response of the structure.

A correlation method for high-frequency response of a cargo during dry transport in high seas

  • Vinayan, Vimal;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.143-159
    • /
    • 2016
  • Cargo, such as a Tension Leg Platform (TLP), Semi-submersible platform (Semi), Spar or a circular Floating Production Storage and Offloading (FPSO), are frequently dry-transported on a Heavy Lift Vessel (HLV) from the point of construction to the point of installation. The voyage can span months and the overhanging portions of the hull can be subject to frequent wave slamming events in rough weather. Tie-downs or sea-fastening are usually provided to ensure the safety of the cargo during the voyage and to keep the extreme responses of the cargo, primarily for the installed equipment and facilities, within the design limits. The proper design of the tie-down is dependent on the accurate prediction of the wave slamming loads the cargo will experience during the voyage. This is a difficult task and model testing is a widely accepted and adopted method to obtain reliable sea-fastening loads and extreme accelerations. However, it is crucial to realize the difference in the inherent stiffness of the instrument that is used to measure the tri-axial sea fastening loads and the prototype design of the tie-downs. It is practically not possible to scale the tri-axial load measuring instrument stiffness to reflect the real tie-down stiffness during tests. A correlation method is required to systematically and consistently account for the stiffness differences and correct the measured results. Direct application of the measured load tends to be conservative and lead to over-design that can reflect on the overall cost and schedule of the project. The objective here is to employ the established correlation method to provide proper high-frequency responses to topsides and hull design teams. In addition, guidance for optimizing tie-down design to avoid damage to the installed equipment, facilities and structural members can be provided.

LIDMOD2 Development for Evaluation of LID/BMPs (LID/BMPs 효과분석을 위한 LIDMOD2 개발)

  • Jeon, Ji-Hong;Choi, Donghyuk;Na, Eun Hye;Park, Chan-Gi;Kim, Tae-Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.432-438
    • /
    • 2010
  • LIDMOD2 was developed for evaluation of low impact development (LID) and best management practice (BMP) by modification of Site Evaluation Tool (SET). The modification includes employment of SCS-CN method for annual runoff simulation, unit load method for annual pollutant loads simulation, and the method proposed by Korean TMDL for calculating pollutant reduction by BMPs. The CN values were updated with regionalized parameters within Nack-Dong River basin because these are important parameters for simulating hydrology. LIDMOD2 was tested by applying to Andong Bus terminal. As a simulation results, pollutant loads and surface runoff will be significantly increased by post-development without LID compared with those from pre-development. LID technique was simulated to efficiently reduce surface runoff and pollutant load and increase infiltration. LIDMOD2 is screening level tool and easy to use because LIDMOD2 is based on spread sheet and most of parameters are regionalized. LIDMOD2 was illustrate that it could evaluate LID well by summarizing and graphing annual hydrology, annual pollutant loading, and hydrograph for event storm. The calculation methods related with pollutant loads are employed from the guideline of Korean TMDL and it can be useful tool for Korean TMDL to evaluate the effect of LID/BMP on developing area.

Seismic behavior of concentrically steel braced frames and their use in strengthening of reinforced concrete frames by external application

  • Unal, Alptug;Kaltakci, Mevlut Yasar
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.687-702
    • /
    • 2016
  • There are many studies in the literature conducted on the subject of ensuring earthquake safety of reinforced concrete and steel structures using steel braced frames, but no detailed study concerning individual behavior of steel braced frames under earthquake loads and strengthening of reinforced concrete structures with out-of-plane steel braced frames has been encountered. In this study, in order to evaluate behaviors of "Concentrically Steel Braced Frames" types defined in TEC-2007 under lateral loads, dimensional analysis of Concentrically Steel Braced Frames designed with different scales and dimensions was conducted, the results were controlled according to TEC-2007, and after conducting static pushover analysis, behavior and load capacity of the Concentrically Steel Braced Frames and hinges sequence of the elements constituting the Concentrically Steel Braced Frames were tested. Concentrically Steel Braced Frames that were tested analytically consist of 2 storey and one bay, and are formed as two groups with the scales 1/2 and 1/3. In the study, Concentrically Steel Braced Frames described in TEC-2007 were designed, which are 7 types in total being non-braced, X-braced, V- braced, $\wedge$- braced, $\backslash$- braced, /- braced and K- braced. Furthermore, in order to verify accuracy of the analytic studies performed, the 1/2 scaled concentrically steel X-braced frame test element made up of box profiles and 1/3 scaled reinforced concrete frame with insufficient earthquake resistance were tested individually under lateral loads, and test results were compared with the results derived from analytic studies and interpreted. Similar results were obtained from both experimental studies and pushover analyses. According to pushover analysis results, load-carrying capacity of 1/3 scaled reinforced concrete frames increased up to 7,01 times as compared to the non-braced specimen upon strengthening. Results acquired from the study revealed that reinforced concrete buildings which have inadequate seismic capacity can be strengthened quickly, easily and economically by this method without evacuating them.

Evaluating Structural Performance of High-Strength Concrete Corbels Containing Steel and Polypropylene Fibers (강섬유 및 폴리프로필렌 섬유로 보강된 고강도콘크리트 내민받침의 구조 거동 평가)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.747-754
    • /
    • 2008
  • In this study, high strength concrete corbels reinforced with steel fibers and polypropylene fibers, and subjected to the vertical and horizontal loads were constructed and tested. The results showed that performance in terms of load carrying capacities, stiffness, ductility, crack width, and number of cracks was improved, as the steel fibers and polypropylene fibers were added. The polypropylene fiber reinforced concrete corbels resulted in higher ductility in presence of horizontal loads, but showed larger crack width than the steel fiber reinforced concrete corbels. And, the heads of the headed bars provided excellent end anchorage of the main tension tie reinforcement. Experimental results presented in this paper are also compared with various prediction models proposed by codes and researchers. The refined strut-and-tie model showed more accurate and conservative predictions in presence of horizontal loads, and the truss model proposed by Fattuhi provides fairly good predictions for fiber reinforced concrete corbels.

Influence of time-dependency on elastic rock properties under constant load and its effect on tunnel stability

  • Aksoy, C.O.;Aksoy, G.G. Uyar;Guney, A.;Ozacar, V.;Yaman, H.E.
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In structures excavated in rock mass, load progressively increases to a level and remains constant during the construction. Rocks display different elastic properties such as Ei and ʋ under different loading conditions and this requires to use the true values of elastic properties for the design of safe structures in rock. Also, rocks will undergo horizontal and vertical deformations depending on the amount of load applied. However, under constant loads, values of Ei and ʋ will vary in time and induce variations in the behavior of the rock mass. In some empirical equations in which deformation modulus of the rock mass is taken into consideration, elastic parameters of intact rock become functions in the equation. Hence, the use of time dependent elastic properties determined under constant loading will yield more reliable results than when only constant elastic properties are used. As well known, rock material will play an important role in the deformation mechanism since the discontinuities will be closed due to the load. In this study, Ei and ʋ values of intact rocks were investigated under different constant loads for certain rocks with high deformation capabilities. The results indicated significant time dependent variations in elastic properties under constant loading conditions. Ei value obtained from deformability test was found to be higher than the Ei value obtained from the constant loading test. This implies that when static values of elastic properties are used, the material is defined as more elastic than the rock material itself. In fact, Ei and ʋ values embedded in empirical equations are not static. Hence, this workattempts to emerge a new understanding in designing of safer structures in rock mass by numerical methods. The use of time-dependent values of Ei and ʋ under different constant loads will yield more accurate results in numerical modeling analysis.

Free Vibrations and Buckling Loads of Columns with Multiple Elastic Springs (여러 개의 스프링으로 탄성지지된 기둥의 자유진동 및 좌굴하중)

  • 이병구;이광범;오상진;이태기
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1067-1074
    • /
    • 2000
  • Numerical methods for calculating both the natural frequencies and buckling loads of columns with the multiple elastic springs are developed. In order to derive the governing equations of such columns, each elastic spring is modeled as a discrete elastic foundation with the finite longitudinal length. By using this model, the differential equations governing both the free vibrations and buckled shapes, respectively, of such columns are derided. These differential equations are solved numerically. The Runge- Kutta method is used to integrate the differential equations, and the determinant search method combined with Regula-Falsi method is used to determine the eingenvalues. namely natural frequencies and buckling loads. In the numerical examples, the clamped-clamped. clamped-hinged, hinged-clamped and hinged-hinged end constraints are considered. Extensive numerical results including the frequency parameters, mode shapes of free vibrations and buckling load parameters are presented in the non-dimensional forms.

  • PDF