• Title/Summary/Keyword: construction loads

Search Result 1,135, Processing Time 0.029 seconds

Reliability-based assessment of American and European specifications for square CFT stub columns

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Cheng
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.811-827
    • /
    • 2015
  • This paper presents a probabilistic investigation of American and European specifications (i.e., AISC and Eurocode 4) for square concrete-filled steel tubular (CFT) stub columns. The study is based on experimental results of 100 axially loaded square CFT stub columns from the literature. By comparing experimental results for ultimate loads with code-predicted column resistances, the uncertainty of resistance models is analyzed and it is found that the modeling uncertainty parameter can be described using random variables of lognormal distribution. Reliability analyses were then performed with/without considering the modeling uncertainty parameter and the safety level of the specifications is evaluated in terms of sufficient and uniform reliability criteria. Results show that: (1) The AISC design code provided slightly conservative results of square CFT stub columns with reliability indices larger than 3.25 and the uniformness of reliability indices is no better because of the quality of the resistance model; (2) The uniformness of reliability indices for the Eurocode 4 was better than that of AISC, but the reliability indices of columns designed following the Eurocode 4 were found to be quite below the target reliability level of Eurocode 4.

A Study on the Strength Comparison of Steel Pipe Support using the Structural Analysis Program (구조해석에 의한 파이프서포트의 내력비교에 관한 연구)

  • Paik, Shin-Won;Park, Jong-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.67-71
    • /
    • 2008
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Slab formwork consists of sheathing, stringer, hanger and shore. In construction site, pipe supports are usually used as shores which are consisted of the slab formwork. In this study, compressive strength of 80 pipe supports was measured by knife edge test and plate test. Buckling load of pipe supports was analyzed by structural analysis program(MlDAS). Theoretical buckling load with/without initial deformation was got by theoretical analysis. According to these results, buckling load which was analyzed by structural analysis program(MlDAS) was larger than compressive strength of knife edge test and plate test. Theoretical buckling load without initial deformation was larger than compressive strength of knife edge test and plate test. But Theoretical buckling load with initial deformation was lower than compressive strength of knife edge test and plate test. Initial deformation equation for test method according to the pipe support length was suggested. Therefore, the present study results will be used to design the slab formwork safely.

Structural Evaluation and Remediation of Floor Slab Deflection

  • Park, Ki-Dong;Kim, Dae-Young;Joung, Dae-Ki
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.61-65
    • /
    • 2008
  • A 4-story reinforced concrete structure built above an underground parking garage shows some slab deflections, and the deflections of the concrete floor slabs are proposed to be alleviated by the application of light-weight topping material in conjunction with localized strengthening of the slabs. The application of light-weight concrete topping on the existing slab has been simulated and its performance to anticipated loads has been analyzed. The application of light-weight topping material imposes additional weight on the exiting floor slabs. This added weight on the existing slabs causes over-stressing of the slabs. This over-stressing can be alleviated by enhancing the load carrying capacity of the existing slabs. Additional load carrying capacity in the existing slabs can be developed by localized strengthening of the slabs utilizing techniques such as the application of fiber-reinforced composites on the bottom surface of the slabs, and application of fiber-reinforced composites adequately complements the capacity of the existing slabs to bear the additional load imposed by light-weight leveling material. Additional moments in the beam and columns induced by the application of the light-weight topping material were tabulated and compared with capacity. The moment D/C ratios of the beam and columns are well the range of acceptable limits, and the beam and columns are not overstressed by the application of the surcharge.

  • PDF

Experimental Study on the Long-Term Properties of High Strength Concrete (고강도 콘크리트의 장기거동 특성에 관한 실험적 연구)

  • Joung, Won-Seoup;Park, Dong-Su;Kwon, Ki-Joo;Lee, Wang-Hee;Kang, Min-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.225-226
    • /
    • 2009
  • Day by day, concrete buildings and structure became high-rising and magnificently vast scheduled, as contributed from the development of improved equipments that suitable to specific construction works and high qualitied Material, the durability of the concrete was highly improved. The temporary elastic reduction occur at vertical members such as walls and columns under vertical loads. Specially, inelastic reduction such as creep and shrinkage occur long termly with elastic one in case of reinforced concrete members. Generally, creep and shrinkage depend on time and this is affected by concrete strength, concrete type, member size, steel ratio, and relative humidity. And elastic reduction rely on time, too because concrete is loaded before revelation of perfect strength in terms of construction conditions. So, tests on mechanical properties of concrete certainly need in order to apply to construction by forecasting an amount of reduction caused by the complex factors. Therefore, in this study the tests on creep, shrinkage are carried out to offer basic data for predicting an amount of long-term Properties at the concrete columns of an object structure, and results of the tests are described.

  • PDF

Preliminary Load Tests for the Design of Large Diameter Drilled Shaft by Bi-directional Loading Method at Toe (대구경 현장타설말뚝의 설계를 위한 선단재하방법에 의한 시험말뚝 재하시험)

  • Song, Myung-Jun;Park, Yung-Ho;Kim, Dong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.89-98
    • /
    • 2005
  • Preliminary pile load tests for the design of large diameter drilled shaft were performed on two of reduced scale(D=1370mm) test piles. The maximum loads of 2350 tonf in each direction were applied using bi-directional hydraulic jacks(Osterberg Cell) at toe. Neither of the test piles yielded in terms of skin friction and end bearing. Comparisons of the test results with several methods that estimate pile capacity show that the method of Horvath and Kenney(1979) for skin friction and Zhang and Einstein(1998) for end bearing were most appropriate for the site. The test results were directly applied to pile design in case RQD of skin and toe was larger than that of the test pile. It is desirable, therefore, to consider not only unconfined compression strength but also rock mass properties(i.e. TCR, RQD) for skin friction and end bearing evaluation in the future.

  • PDF

Determination of Efficient Shoring System in RC Frame Structures Considering Time-Dependent Behavior of Concrete (시간의존적 거동을 고려한 철근콘크리트 골조의 효율적인 지지시스템 결정)

  • 김진국;홍수미;곽효경
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.225-239
    • /
    • 2004
  • In this paper, systematic analyses for the shoring systems installed to support applied loads during construction are performed on the basis of the numerical approach introduced in the previous study. Structural behaviors require changes in design variables such as types of shoring systems, shore stiffness and shore spacing. In this paper, the design variable are analyzed and discussed. The time dependent deformations of concrete and construction sequences of frame structures are also taken into account to minimize structural instability and to improve design of shoring system, because those effects may increase axial forces delivered to shores. From many parametric studies, it can be recommended that the most effective shoring system is 2SlR(two shores and one reshore)

Experimental Study of Cooling Energy Saving Verification Using Blinds and Phase Change Material(PCM) (창호 블라인드와 상변화물질 적용에 의한 냉방 에너지 사용량 절감효과에 대한 검토 연구)

  • Song, Young-Hak;Kim, Ki-Tae;Koo, Bo-Kyung;Lee, Keon-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.26-31
    • /
    • 2014
  • This study looks into changing building energy use by application of phase change material (PCM). PCM does not need extra energy for operation and is used for reducing building energy use and, CO2 output by displaying semi-permanent effects after installation. It also is able to avoid the maximum electric power time-zone by inducing a time lag phenomenon of cooling and heating loads with high thermal capacity using latent heat. To verify the efficiency of blinds and PCM, tests about the PCM operation mechanism using air conditioning machinery and nocturnal panel cooling were done. In the test results of the case using PCM installation, a $45^{\circ}$ blind angle with machinery air conditioning and nocturnal panel cooling at the same time shows a 22 percent energy saving effect against general space. The test results of each case were compared and analyzed based on the blind and window opening settings. Finally, the energy reduction of existing buildings using PCM application was reviewed based on the final measurement results.

Evaluation of Limiting Temperatures of Rectangular Hollow Sections (각형 강관기둥부재의 한계온도 평가 연구)

  • Kwon, In-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.331-332
    • /
    • 2012
  • Structural steel has been used as a primary materials to columns and beams since 1960's in Korea with an advantages of excellent of load-bearing capacity and design flexibility, and faster construction. However, if the steel columns made of structural steel exposed to fire the load-bearing capacity is going down steadily and finally reach to collapse. Therefore, building regulation requires fire resistance according to building occupation, scales. The fire resistance can be evaluated two categories. One is prescriptive method that is based on building regulation, specification and so on and the other is performance-based fire engineering method. The latter can be designed based on scientific and engineering consequences. The easiest evaluation way using the fire engineering design is comparing to the limiting temperature and maximum temperature calculated based on heat transfer theory. If the limiting temperature of a column exceeds the maximum temperature of it, the column can carry the load during the fire. Therefore, the database of limiting temperature is very essential for evaluation of column. In this paper, to build the database of column made of rectangular hollow sections 8 fire tests with loading were conducted and the relation between the limiting temperature and the applied loads showed in reverse proportion.

  • PDF

Cover Requirements for Corrugated HDPE and PVC Pipes Used for Cross-drains in Highway Construction (고속도로 하부 횡단 배수시설로 사용되는 파형 플래스틱 관의 덮개 요건)

  • Kang, Junsuk;Davidson, James S.;Lim, Jeong-Hyeon;Kang, Young Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • This project investigated the use of two types of thermoplastic pipes, High-Density Polyethylene (HDPE) and Poly-vinyl Chloride (PVC), as cross-drains under highways. Pipes ranging from 0.3 m (12 in.) to 1.5 m (60 in.) in diameter were evaluated under deep fills, minimum cover, and construction loads. In addition to a comprehensive literature review, an analytical study into the allowable fill heights for thermoplastic pipes and a field study to observe the installation and performance of the pipe in service conditions were conducted. Based on the study findings, recommendations regarding how and when thermoplastic pipe should be installed are provided.

A Study on Improving the Strength Properties of Adobe Brick with the use of Agriculture Waste Stabilizer

  • Sasui, Sasui;Kim, Gyu-Yong;Lee, Sang Kyu;Son, Min-Jae;Hwang, Eui-Chul;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.25-26
    • /
    • 2019
  • The construction of adobe houses in flood prone areas is a common practice. These houses collapse when hydraulic loads from flood exerts on the houses. The failure occurs because the adobe brick lacks strength. In order to improve strength of adobe brick, the effects of agriculture waste therefore rice straw, rice husk and rice husk ash as a stabilizing agent have been explored in this paper. The compressive strength test and splitting test was conducted on the adobe specimens which were stabilized with 2% rice straws, 2% rice husk and 2% rice husk ash by the dry weight of soil. The results showed the improvement in strength and elasticity of specimens containing rice straws & rice husk. Whereas with the addition of rice husk ash, the adobe loses its strength and showed plastic behavior.

  • PDF