• Title/Summary/Keyword: construction loads

Search Result 1,135, Processing Time 0.028 seconds

Creep Effect of Shallow Plate Anchor in Soft Clsy

  • Shin, Eun-Chul;Das, Braja
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.63-72
    • /
    • 1996
  • Plate anchors are often used for various types of offshore construction and maintenance works. When the plates are embedded in soft clay and subjected to sustanined allowable loads, creep may develop. This paper presents some results from laboratory model test designed to study the creep effect that develops with time for a shallow circular anchor subjected to sustained net loads that are less than the net ultimate uplift capacity. Based on the model test results, relationships among the net load, the rate of strain, and time are developed.

  • PDF

An approach for calculating the failure loads of unprotected concrete filled steel columns exposed to fire

  • Wang, Y.C.;Kodur, V.K.R.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.127-145
    • /
    • 1999
  • This paper deals with the development of an approach for evaluating the squash load and rigidity of unprotected concrete filled steel columns at elevated temperatures. The current approach of evaluating these properties is reviewed. It is shown that with a non-uniform temperature distribution, over the composite cross-section, the calculations for the squash load and rigidity are tedious in the current method. A simplified approach is proposed to evaluate the temperature distribution, squash load, and rigidity of composite columns. This approach is based on the model in Eurocode 4 and can conveniently be used to calculate the resistance to axial compression of a concrete filled steel column for any fire resistance time. The accuracy of the proposed approach is assessed by comparing the predicted strengths against the results of fire tests on concrete filled circular and square steel columns. The applicability of the proposed approach to a design situation is illustrated through a numerical example.

Numerical Calculation and Experiment of Green Water on the Bow Deck in Regular Waves (규칙파 중 선수갑판 Green Water에 대한 수치계산 및 실험)

  • Kim, Yong-Jig;Shin, Ki-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.350-356
    • /
    • 2005
  • Prediction of green water loads acting on the bow deck is au essential part for the design of bow structures against the green water impact. Proper technique of the green water simulation is highly required for the prediction of green water loads. in this paper, the green water flow on bow deck is simulated by FDM(finite difference method). Using the results of green water simulation, impact load on bow deck is calculated. Also, experiments are carried out to compare with the numerical calculation. Through the comparisons between experimental results and numerical results, it is verified that the present numerical tool is adequate as a practical calculation tool for the green water problem.

Modal Analysis and Failure Safety Estimation for the Satellite Antenna System Composed of Sandwich Structure with Laminated Face Sheet (적층된 외피를 갖는 샌드위치로 구성된 위성체 안테나 시스템의 모드 해석과 파손안전성 판별)

  • Oh, Se-Hee;Han, Jae-Hung;Oh, Il-Kwon;Shin, Won-Ho;Kim, Chun-Gon;Lee, In;Park, Jong-Heung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.228-233
    • /
    • 2001
  • Satellite system experiences severe mechanical loads during the launch period. Therefore, positive margin of safety of the satellite system must be demonstrated for every possible mechanical loading condition during the launch period. This paper presents modal and stress analysis result due to quasi-static loads for the satellite antenna system. The failure tendency for the sandwich construction of the satellite antenna system has been studied with various lamination angles of unidirectional prepreg.

  • PDF

Investigation of Actural State of Plastic Greenhouse Structures in Korea (플라스틱 하우스의 구조 실태의 조사 연구)

  • 김문기;고재군;이신호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.113-124
    • /
    • 1987
  • The objective of this study was to disclose the problem of structural safety and the state of utilization of standard types of plastic film house through investigation of actural state of plastic greenhouses for the southern part of the Korean peninsula. And also, the application method of standard types were proposed. The results obtained are summarized as follows 1. Plastic film houses investigated were not designed by the structural design conditions of loads and materials. 2.The construction method of greenhouses was not standardized. 3.Single type of standard greenhouses was nearly used and double types were applied to the standard type. 4.The standard frames of plastic film house were appeared to have structural lack of stability at the design snow and wind loads for most regions. 5.Safety snow depths and safety wind velocities were proposed for the frame intervals and pipe diameters of standard greenhouses.

  • PDF

Numerical evaluation of FRP composite retrofitted reinforced concrete wall subjected to blast load

  • Nam, Jin-Won;Yoon, In-Seok;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.215-225
    • /
    • 2016
  • High performance materials such as Fiber Reinforced Plastic (FRP) are often used for retrofitting structures against blast loads due to its ductility and strength. The effectiveness of retrofit materials needs to be precisely evaluated for the retrofitting design based on the dynamic material responses under blast loads. In this study, the blast resistance of Carbon Fiber Reinforced Plastic (CFRP) and Kevlar/Glass hybrid fabric (K/G) retrofitted reinforced concrete (RC) wall is analyzed by using the explicit analysis code LS-DYNA, which accommodates the high-strain rate dependent material models. Also, the retrofit effectiveness of FRP fabrics is evaluated by comparing the analysis results for non-retrofitted and retrofitted walls. The verification of the analysis is performed through comparisons with the previous experimental results.

Control of a Balance-Beam with Unknown Loads Using the Restoration Angle of a Gimbal

  • Yi Keon-Young;Kim Yong-Jun;Chung Sam-Yong;Han Song-Soo;Lee Sang-Heon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.524-528
    • /
    • 2006
  • A controller built with the gyro effect for a balance-beam can freely control the attitude of an unstructured object by changing the position of an inner gimbal. In this paper, we propose a new balance-beam controller that can detect the inertia of the load to limit the velocity of the load commanded by a user. We found that when there was smaller load inertia, a larger restoration displacement occurred. Therefore, the load can be identified by issuing a predefined command to measure the restoration displacement, which enables us to construct a controller that can limit the angular velocity of the load by planning the motion. Experimental results show the performance of the controller with different loads.

Load deformation characteristics of shallow suspension footbridge with reverse profiled pre-tensioned cables

  • Huang, Ming-Hui;Thambiratnam, David P.;Perera, Nimal J.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.375-392
    • /
    • 2005
  • Cable supported structures offer an elegant and economical solution for bridging over long spans with resultant low material content and ease of construction. In this paper, a model of shallow cable supported footbridge with reverse profiled pre-tensioned cables is treated and its load deformation characteristics under different quasi-static loads are investigated. Effects of important parameters such as cable sag and pre-tension are also studied. Numerical results performed on a 3D model show that structural stiffness of this bridge (model) depends not only on the cable sag and cross sectional areas of the cables, but also on the pre-tension in the reverse profiled cables. The tension in the top supporting cables can be adjusted to a high level by the pre-tension in the reverse profiled bottom cables, with the total horizontal force in the bridge structure remaining reasonably constant. It is also evident that pre-tensioned horizontally profiled cables can greatly increase the lateral horizontal stiffness and suppress the lateral horizontal deflection induced by eccentric vertical loads.

Structural Analysis for 4-Seater Canard Airplane (4인승 선미익기 구조해석)

  • Kim, Sung-Joon;Shim, Jae-Yeul
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.35-39
    • /
    • 2007
  • In this paper, we have presented structural analysis procedure and full scale test results for 4-seater canard airplane. Construction of the finite element model is critical path for the aircraft structural analysis and directly affects the structural integrity. The refinement of the finite element model should be determined depending on full scale test results. From the results of the structural analysis, 5 design limit loads test conditions and 11 design ultimate loads test conditions were selected. By the presented procedure, the structural integrity of 4-Seater Canard Airplane is successfully obtained.

  • PDF

A Study on Intelligent Predictive PID Control Systems for Vibration of Structure due to Environmental Loads (환경적 부하로 인해 발생되는 건축물의 진동을 위한 지능형 예측 PID 제어시스템에 관한 연구)

  • Cho, Hyun-C.;Lee, Young-J.;Lee, Jin-W.;Lee, Kwoon-S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.798-800
    • /
    • 1998
  • In recent years, advances in construction techniques and materials have given rise to flexible light-weight structures. Because these structures extremely susceptib environmental loads, these random loadings u produce large deflection and acceleration on structures. Vibration control system of structur becoming an integral part of the structural syst the next generation of tall building. The proposed control system is applied to s degree of structure with mass damping and com with conventional PID and neural network PID system.

  • PDF