• Title/Summary/Keyword: construction loads

Search Result 1,135, Processing Time 0.026 seconds

Characteristics of CFRP strengthened tubular joints subjected to different monotonic loadings

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.361-372
    • /
    • 2019
  • Tubular joints are used in the construction of offshore structures and other land-based structures because of its ease of fabrication. These joints are subjected to different environmental loadings in their lifetime. At the time of fabrication or modification of an existing offshore platform, tubular joints are usually strengthened to withstand the environmental loads. Currently, various strengthening techniques such as ring stiffeners, gusset plates are employed to strengthen new and existing tubular joints. Due to some limitations with the present practices, some new techniques need to be addressed. Many researchers used Fibre Reinforced Polymer (FRP) to strengthen tubular joints. Some of the studies were focused on axial compression of Glass Fibre Reinforced Polymer (GFRP) strengthened tubular joints and found that it was an efficient technique. Earlier, the authors had performed studies on Carbon Fibre Reinforced Polymer (CFRP) strengthened tubular joint subjected to axial compression. The study steered to the conclusion that FRP composites is an alternative strengthening technique for tubular joints. In this work, the study was focused on axial compression of Y-joint and in plane and out of plane bending of T-joints. Experimental investigations were performed on these joints, fabricated from ASTM A106 Gr. B steel. Two sets of joints were fabricated for testing, one is a reference joint and the other is a joint strengthened with CFRP. After performing the set of experiments, test results were then compared with the numerical solution in ANSYS Parametric Design Language (APDL). It was observed that the joints strengthened with CFRP were having improved strength, lesser surface displacement and ovalization when compared to the reference joint.

Structural efficiency of various strengthening schemes for cold-formed steel beams: Effect of global imperfections

  • Dar, M. Adil;Subramanian, N.;Dar, A.R.;Majid, Muheeb;Haseeb, Mohd;Tahoor, Mugees
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • Cold-formed steel (CFS) has a great potential to meet the global challenge of fast-track and durable construction. CFS members undergo large buckling instabilities due to their small wall thickness. CFS beams with corrugated webs have shown great resistance towards web buckling under flexure, when compared to the conventional I-sections. However, the magnitude of global imperfections significantly affects the performance of CFS members. This paper presents the first attempt made to experimentally study the effect of global imperfections on the structural efficiency of various strengthening schemes implemented in CFS beams with corrugated webs. Different strengthening schemes were adopted for two types of beams, one with large global imperfections and the other with small imperfections. Strength and stiffness characteristics of the beams were used to evaluate the structural efficiency of the various strengthening schemes adopted. Six tests were performed with simply supported end conditions, under four-point loading conditions. The load vs. mid-span displacement response, failure loads and modes of failure of the test specimens were investigated. The test results would compensate the lack of experimental data in this area of research and would help in developing numerical models for extensive studies for the development of necessary guidelines on the same. Strengthening schemes assisted in enhancing the member performance significantly, both in terms of strength and stiffness. Hence, providing an economic and time saving solution to such practical structural engineering problems.

Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.589-597
    • /
    • 2018
  • Centrifuge model tests were used to simulate pile-raft composite foundation and pile-geogrid composite foundation with different pile spacing for researching the time effect of negative skin friction of rigid piles in high-speed railways. The research results show that the negative skin friction has a significant impact on the bearing capacity of composite foundation. Pile-raft composite foundation has higher bearing capacity compared to pile-geogrid composite foundation to reduce the effect of negative skin friction on piles. Both the foundation settlement and negative skin friction have significant time effect. The distribution of skin friction can be simplified as a triangle along the pile. The neutral point position moves deeper in the postconstruction stage at larger pile spacing. For pile-geogrid composite foundation, the setting of pile-cap affects the position of neutral point in the post-construction stage. Reinforced cushion with geotextile may promote the better performance of cushion for transmitting the loads to piles and surrounding soils. Arching effect in the cushion of the composite foundation is a progressive process. The compression of the rigid piles contributes less than 20% to 25% of the total settlement while the penetration of the piles and the compression of the bearing stratum below the pile tips contribute more than 70% of the total settlement. Some effective measures to reduce the settlement of soils need to be taken into consideration to improve the bearing capacity of pile foundation.

Experimental Study on the Structural Capacity of the U-Flanged Truss Steel Beam (U-플랜지 트러스 보의 구조 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho;Kang, Jae Yoon;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.113-121
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study the structural experiments on the U-flanged truss beams with various shapes of upper flange were performed, and the flexural and shear capacities of U-flanged truss beam in the construction stage were evaluated. The principal test parameters were the shape of upper flange and the alignment space of diagonal lattice bars. In all the test specimens, the peak loads were determined by the buckling of lattice bar regardless of the upper flange shape. The test results have shown that the buckling of lattice bar is very important design factor and there is no need to reinforce the basic u-shaped upper flange. However, the early lattice buckling occurred in the truss beam with upper steel bars because of the insufficient strength and stiffness of upper chord, and the reinforcement in the upper chord is necessary. The formulae of Eurocode 3 (2005) have presented more exact evaluations of lattice buckling load than those of KBC 2016.

Characteristics of wind loading on internal surface and its effect on wind-induced responses of a super-large natural-draught cooling tower

  • Zou, Yun-feng;Fu, Zheng-yi;He, Xu-hui;Jing, Hai-quan;Li, Ling-yao;Niu, Hua-wei;Chen, Zheng-qing
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.235-246
    • /
    • 2019
  • Wind loading is one of important loadings that should be considered in the design of large hyperbolic natural-draught cooling towers. Both external and internal surfaces of cooling tower are under the action of wind loading for cooling circulating water. In the previous studies, the wind loads on the external surface attracted concernedly attention, while the study on the internal surface was relatively ware. In the present study, the wind pressure on the internal surface of a 220 m high cooling tower is measured through wind tunnel testing, and the effect of ventilation rate of the packing layer on internal pressure is a major concern. The characteristics of internal wind pressure distribution and its effect on wind-induced responses calculated by finite element method are investigated. The results indicate that the wind loading on internal surface of the cooling tower behaves remarkable three-dimensional effect, and the pressure coefficient varies along both of height and circumferential directions. The non-uniformity is particularly strong during the construction stage. Analysis results of the effect of internal pressure on wind-induced responses show that the size and distribution characteristics of internal pressure will have some influence on wind-induced response, however, the outer pressure plays a dominant role in the wind-induced response of cooling tower, and the contribution of internal pressure to the response is small.

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

Safety Evaluation of the Precast Half Deck Pannel Joints Reinforced by Connection Rebar (이음철근이 보강된 반단면 프리캐스트 판넬 이음부의 강도 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.40-47
    • /
    • 2019
  • The Half-depth precast deck is a structural system that utilizes pre-cast panels pre-built at the factory as formwork at the construction stage and as a major structural member at the same time after completion. These systems have joints between segments, and the detail and performance of the joints are factors that have a very large impact on the quality, such as the constructability and durability of the bridge decks. In this study, strength performance evaluation was performed for improved joints using connecting rebar by experimental method. Static loading tests were conducted on the test specimen with improved joint, those with existing joint and those without joint. The test results of the specimens were compared to each other, and the flexural strength required by the design was compared. The flexural strength required in the design was presented by finite element analysis. It has been shown that the flexural strength of the specimens with joints were more than twice that required by the design. But the flexural strength of the specimen with existing joint was about 84% of that without joint. The flexural strength of the specimen with improved joints was a nearly similar degree of that compared to the specimen without joint. And a comparison of the moment-deflection relationship curves of the two specimens also shows a very similar flexural behavior. It is confirmed that improved joint has sufficient flexural strength. In addition to strength, the bridge decks require serviceability, such as deflection and cracking, and in particular, fatigue resistance due to repetitive live loads is an important performance factor. Therefore, further verification studies are required.

The influence of internal ring beams on the internal pressure for large cooling towers with wind-thermal coupling effect

  • Ke, Shitang;Yu, Wei;Ge, Yaojun;Zhao, in;Cao, Shuyang
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • Internal ring beams are primary components of new ring-stiffened cooling towers. In this study, numerical simulation of the internal flow field of a cooling tower with three ring beams under wind-thermal coupling effect is performed. The studied cooling tower is a 220-m super-large hyperbolic indirect natural draft cooling tower that is under construction in China and will be the World's highest cooling tower, the influence of peripheral radiators in operating cooling tower is also considered. Based on the simulation, the three-dimensional effect and distribution pattern of the wind loads on inner surface of the cooling tower is summarized, the average wind pressure distributions on the inner surface before and after the addition of the ring beams are analyzed, and the influence pattern of ring beams on the internal pressure coefficient value is derived. The action mechanisms behind the air flows inside the tower are compared. In addition, the effects of internal ring beams on temperature field characteristics, turbulence kinetic energy distribution, and wind resistance are analyzed. Finally, the internal pressure coefficients are suggested for ring-stiffened cooling towers under wind-thermal coupling effect. The study shows that the influence of internal stiffening ring beams on the internal pressure and flow of cooling towers should not be ignored, and the wind-thermal coupling effect should also be considered in the numerical simulation of cooling tower flow fields. The primary conclusions presented in this paper offer references for determining the internal suction of such ring-stiffened cooling towers.

Characteristics of Changes in Water Quality in the Suyoung River During Rainfall Event (강우 시 수영강 유역의 수질변화 특성)

  • Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • Recently, it was realized that a significant portion of pollution from urban areas originates from non-point sources such as construction sites, washoff from impervious surfaces, and sewage input from unsewered areas and combined sewer overflows. Especially, Urban stormwater runoff is one of the most extensive cause of the deterioration of the water quality in streams located in urban area. The objective of this study was to investigate runoff characteristics of non-point pollutants source at the urban area in the Suyeong River. Water quality variations were investigated at two points of Suyeong River during a period of 10 rainfall events. Concentration difference of non-point pollution source appeared big by precedent number of days of no rainfall. In addition, Event mean Concentration (EMCs) that well represents runoff characteristics of storm water during rainfall, was calculated, and runoff pollutants loading was also examined. The probability distribution of EMCs of BOD, COD, TOC, T-N, T-P, and TSS were analyzed and the mean values of observed EMC and the median values of estimated EMCs compared through probability distribution. Other objectives of this study were the characterization of discharge from non-point source, the analysis of the pollutant loads and an establishment of a management plan for non-point source of Suyeong River. Also, It was established that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning.

Experimental Study on Low Cyclic Loading Tests of Steel Plate Shear Walls with Multilayer Slits

  • Lu, Jinyu;Yu, Shunji;Qiao, Xudong;Li, Na
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1210-1218
    • /
    • 2018
  • A new type of earthquake-resisting element that consists of a steel plate shear wall with slits is introduced. The infill steel plate is divided into a series of vertical flexural links with vertical links. The steel plate shear walls absorb energy by means of in-plane bending deformation of the flexural links and the energy dissipation capacity of the plastic hinges formed at both ends of the flexural links when under lateral loads. In this paper, finite element analysis and experimental studies at low cyclic loadings were conducted on specimens with steel plate shear walls with multilayer slits. The effects caused by varied slit pattern in terms of slit design parameters on lateral stiffness, ultimate bearing capacity and hysteretic behavior of the shear walls were analyzed. Results showed that the failure mode of steel plate shear walls with a single-layer slit was more likely to be out-of-plane buckling of the flexural links. As a result, the lateral stiffness and the ultimate bearing capacity were relatively lower when the precondition of the total height of the vertical slits remained the same. Differently, the failure mode of steel plate shear walls with multilayer slits was prone to global buckling of the infill steel plates; more obvious tensile fields provided evidence to the fact of higher lateral stiffness and excellent ultimate bearing capacity. It was also concluded that multilayer specimens exhibited better energy dissipation capacity compared with single-layer plate shear walls.