• Title/Summary/Keyword: construction loads

Search Result 1,135, Processing Time 0.026 seconds

Performance Evaluation of the Drift Control in Residential Tall Building Using the Dampers (제진장치를 적용한 초고층 주거형 건축물의 횡변위 제어 성능 평가)

  • Park, Ji-Hyeong;Kim, Tae-Ho;Kim, Ook-Jong;Lee, Do-Bum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.265-273
    • /
    • 2008
  • The problem controlling lateral drift by the wind and the earthquake is very important in high rise buildings. But, outrigger system, generally used for residential tall buildings in Korea, has weak points with the occupancy of special space, the difficult construction and the long duration of works. On the other hand, the damper reduces story drifts of building structure by absorbing vibration energy induced by the dynamic loads and the application of damper systems is relatively simple. Also, the lateral drift control system such as outrigger system may raise the wind vibration problem of serviceability like human comfort and this problem may need another vibration control devices. Accordingly, we analyze the effect of the drift control using various dampers to substitute for outrigger system as the efficient system in residential tall buildings.

Study on the Reinforced Concrete Slab Bridges of North Korea (북한의 철근콘크리트 슬래브교에 관한 연구)

  • Han, Eui Seok;Lee, In Keun;Park, Sun Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.455-464
    • /
    • 2013
  • If North Korea continuously remains an isolated nation without social interaction with South Korea, the gaps in the theoretical and technological status in construction technology become greater between North and South Korea. Therefore if interactions between North and South Korea can be made, there will be significant improvement in infrastructure technological performance can be made(i.e., Reinforced Concrete bridges). This study was performed to compare and analyze data related to the design standards of North Korean RC bridges and to execute a structural analysis based on standard design specifications of RC slab bridges. Especially, basic study of analyzing the influences on design truck loads of North and South Korea was conducted for the purpose of predicting the performance of North Korean RC slab bridges and the safety levels of traveling vehicles in advance. It is expected that the results of this study can be used as fundamental data for the set-up of South-North RC bridge specification when South and North Korea enter a stage of cooperation and interaction between South and North Korea are actively pursued to prepare for reunification.

Large eddy simulation of wind effects on a super-tall building

  • Huang, Shenghong;Li, Q.S.
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.557-580
    • /
    • 2010
  • A new inflow turbulence generation method and a combined dynamic SGS model recently developed by the authors were applied to evaluate the wind effects on 508 m high Taipei 101 Tower. Unlike the majority of the past studies on large eddy simulation (LES) of wind effects on tall buildings, the present numerical simulations were conducted for the full-scale tall building with Reynolds number greater than $10^8$. The inflow turbulent flow field was generated based on the new method called discretizing and synthesizing of random flow generation technique (DSRFG) with a prominent feature that the generated wind velocity fluctuations satisfy any target spectrum and target profiles of turbulence intensity and turbulence integral length scale. The new dynamic SGS model takes both advantages of one-equation SGS model and a dynamic production term without test-filtering operation, which is particular suitable to relative coarse grid situations and high Reynolds number flows. The results of comparative investigations with and without generation of inflow turbulence show that: (1) proper simulation of an inflow turbulent field is essential in accurate evaluation of dynamic wind loads on a tall building and the prescribed inflow turbulence characteristics can be adequately imposed on the inflow boundary by the DSRFG method; (2) the DSRFG can generate a large number of random vortex-like patterns in oncoming flow, leading to good agreements of both mean and dynamic forces with wind tunnel test results; (3) The dynamic mechanism of the adopted SGS model behaves adequately in the present LES and its integration with the DSRFG technique can provide satisfactory predictions of the wind effects on the super-tall building.

Fracture behavior and pore structure of concrete with metakaolin

  • Akcay, Burcu;Sengul, Cengiz;Tasdemir, Mehmet ali
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.71-88
    • /
    • 2016
  • Metakaolin, a dehydroxylated product of the mineral kaolinite, is one of the most valuable admixtures for high-performance concrete applications, including constructing reinforced concrete bridges and impact- and fire-resistant structures. Concretes produced using metakaolin become more homogeneous and denser compared to normal-strength concrete. Yet, these changes cause a change of volume throughout hardening, and increase the brittleness of hardened concrete significantly. In order to examine how the use of metakaolin affects the fracture and mechanical behavior of high-performance concrete we produced concretes using a range of water to binder ratio (0.42, 0.35 and 0.28) at three different weight fractions of metakaolin replacement (8%, 16% and 24%). The results showed that the rigidity of concretes increased with using 8% and 16% metakaolin, while it decreased in all series with 24% of metakaolin replacement. Similar effect has also been observed for other mechanical properties. While the peak loads in load-displacement curves of concretes decreased significantly with increasing water to binder ratio, this effect have been found to be diminished by using metakaolin. Pore structure analysis through mercury intrusion porosimetry test showed that the addition of metakaolin decreased the critical pore size of paste phases of concrete, and increasing the amount of metakaolin reduced the total porosity for the specimens with low water to binder ratios in particular. To determine the optimal values of water to binder ratio and metakaolin content in producing high-strength and high-performance concrete we applied a multi-objective optimization, where several responses were simultaneously assessed to find the best solution for each parameter.

A Study on the Repair Method for Performance Degradation Cause of Korean Arch Bridge -Focused on the Seonamsa Seungseonggyo, Songgwangsa Geukrockgyo- (홍예교 성능저하 원인에 따른 보수방안 고찰 - 선암사 승선교·송광사 극락교를 중심으로 -)

  • Kim, Jeong-Eon;Cheon, Deuk-Youm
    • Journal of architectural history
    • /
    • v.23 no.1
    • /
    • pp.7-19
    • /
    • 2014
  • This study considers the proper repair techniques by examining the most representative repair cases of the Korean arch bridges and proposes the constructional manual which can apply similar occasions. The cases are Seonamsa Seungseongyo and Songgwangsa Geukrockgyo where this researcher had taken part in the repair works. This Study proposes the maintenance construction manual about the performance degradation drew by performance degradation of the both Korean arch bridges in the maintenance process. First, arch bridge maintenance should be carried out in the dry season, when water is impermeable in the bottom surface of the bridge. Moreover, risk factors of the maintenance should be excluded to secure the water vally flow, the bypass and the temporary bridge. Second, prior to repair, it has to precede (1)3D shooting (2)formal examination (3)structure safety test (4)geological and lithic surveys (5)arch curvature establishment and makeshift frame settlement before transformation (6)relationship expert comments. Third, if the baduk and the foundation stones are inevitable to replace due to performance degradation on the foundation, it should use the high quality stones and secure greater stress by extending the standard range. The foundation on irregular rock needs to be flattened and underside on the replaced materials require Grengyijil to deliver the equal loads. Fourth, In the process of dismantling the stones of the arched bridge, it could make heavy weathering degree and not reuse the materials. Charge should converge the expert advices to choose the reuseable, the conservate and the alternative materials, and increase the reutilization of the raw materials by preservation and reinforcement treatments. Fifth, the side wall should be repaired by the rubble work technique which is not able to pile compost satiety, so it must use long depth of masonary stones for reinforcement. It is considered to reinforce the stone wall in shore as much as possible and protect the abutment and the side wall on the upstream for the arch bridge maintenance works.

Effect of Skirt Length on Behavior of Suction Foundations for Offshore Wind Turbines Installed in Dense Sand Subjected to Earthquake Loadings (조밀한 모래지반에 설치된 해상풍력 석션기초의 스커트길이에 따른 지진하중시 거동특성)

  • Choo, Yun Wook;Olalo, Leonardo;Bae, Kyung-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.202-211
    • /
    • 2016
  • This study aims to analyze seismic responses of suction foundations for offshore wind turbine. For this purpose, dynamic centrifuge model tests were carried out. The skirt length of the suction foundation is a critical element for bearing mechanism against environmental loads. Thus, dynamic centrifuge model tests were performed and analyzed for three suction foundation models with the ratios of skirt length to suction foundation diameter of 0.5, 0.75, and 1 installed in dense sand. As results, the acceleration amplification at the suction foundation, residual settlement, and residual tilting angle were compared.

Structural System Selection and Highlights of Changsha IFC T1 Tower

  • Jianlong, Zhou;Daoyuan, Lu;Liang, Huang;Jun, Ji;Jun, Zhu;Jingyu, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • This paper presents the determination of the structural system of the Changsha IFC T1 tower with 452 m in architectural height and 440.45 m in structural height. Sensitivity analyses are carried out by varying the location of belt trusses and outriggers. The enhancement of seismic capacity of the outer frame by reasonably adjusting the column size is confirmed based on parametric studies. The results from construction simulation including the non-load effect of structures demonstrate that the deformation of vertical members has little effect on the load-bearing capacity of belt trusses and outriggers. The elastoplastic time-history analysis shows that the overall structure under rare earthquake load remains in an elastic state. The influence of the frame shear ratio and frame overturning moment ratio on the proposed model and equivalent mega column model is investigated. It is found that the frame overturning moment ratio is more applicable for judging the resistance of the outer frame against lateral loads. Comparison is made on the variation of these two effects between a classical frame-core tube-outrigger structure and a structure with diagonal braces between super columns under rare earthquakes. The results indicate that plasticity development of the top core cube of the braced structure may be significantly improved.

Study on the Joint Stiffness, Natural Frequency and Damping Ratio of Stone Pagodas in Korea (국내 석탑의 강성, 고유진동수 및 감쇠비에 관한 연구)

  • Lee, Sung-Min;Choi, Hee-Soo;Lee, Ki-Hak;Lee, Chan-Hee;Jo, Young-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2018
  • Following the earthquake that shook the city of Gyeongju, Korea, in 2016, it became apparent that research on the safety of cultural heritages against the seismic hazards is necessary in Korea. Predictions of how historically significant stone pagodas would behave the earthquakes anticipated in near future, which are the subject of this study, is also required. In this study, the dynamic characteristics of 15 cultural heritage designated stone pagodas of Korea were investigated, including natural frequency and damping ratio, and the stiffness of the stone material and its contact area were determined using eigenvalue analysis by assuming the stone pagodas to be multi-degree-of-freedom structures. The results of this study enable the structural modeling of stone pagodas using a finite element analysis program and the method is expected to be useful in assessing the structural safety of stone pagodas against vertical loads as well as lateral forces, including earthquakes. Also, by identifying the dynamic characteristics of the structures, the results of this study can be utilized as a nondestructive testing method to determine the rigidity of cultural heritage structures and to identify inherent problems. The natural frequencies of the Korean stone pagodas were measured to be within 3.5~8.3Hz, excluding cases with distinct natural frequency results, and it was determined that the natural frequencies of the stone pagodas are influenced by various parameters including the height and joint stiffness of the structures.

Experimental and analytical investigation on seismic behavior of RC framed structure by pushover method

  • Sharma, Akanshu;Reddy, G.R.;Eligehausen, R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.125-145
    • /
    • 2011
  • Pushover analysis has gained significant popularity as an analytical tool for realistic determination of the inelastic behaviour of RC structures. Though significant work has been done to evaluate the demands realistically, the evaluation of capacity and realistic failure modes has taken a back seat. In order to throw light on the inelastic behaviour and capacity evaluation for the RC framed structures, a 3D Reinforced concrete frame structure was tested under monotonically increasing lateral pushover loads, in a parabolic pattern, till failure. The structure consisted of three storeys and had 2 bays along the two orthogonal directions. The structure was gradually pushed in small increments of load and the corresponding displacements were monitored continuously, leading to a pushover curve for the structure as a result of the test along with other relevant information such as strains on reinforcement bars at critical locations, failure modes etc. The major failure modes were observed as flexural failure of beams and columns, torsional failure of transverse beams and joint shear failure. The analysis of the structure was by considering all these failure modes. In order to have a comparison, the analysis was performed as three different cases. In one case, only the flexural hinges were modelled for critical locations in beams and columns; in second the torsional hinges for transverse beams were included in the analysis and in the third case, joint shear hinges were also included in the analysis. It is shown that modelling and capturing all the failure modes is practically possible and such an analysis can provide the realistic insight into the behaviour of the structure.

Comparison between wind load by wind tunnel test and in-site measurement of long-span spatial structure

  • Liu, Hui;Qu, Wei-Lian;Li, Qiu-Sheng
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.301-319
    • /
    • 2011
  • The full-scale measurements are compared with the wind tunnel test results for the long-span roof latticed spatial structure of Shenzhen Citizen Center. A direct comparison of model testing results to full-scale measurements is always desirable, not only in validating the experimental data and methods but also in providing better understanding of the physics such as Reynolds numbers and scale effects. Since the quantity and location of full-scale measurements points are different from those of the wind tunnel tests taps, the weighted proper orthogonal decomposition technique is applied to the wind pressure data obtained from the wind tunnel tests to generate a time history of wind load vector, then loads acted on all the internal nodes are obtained by interpolation technique. The nodal mean wind pressure coefficients, root-mean-square of wind pressure coefficients and wind pressure power spectrum are also calculated. The time and frequency domain characteristics of full-scale measurements wind load are analyzed based on filtered data-acquisitions. In the analysis, special attention is paid to the distributions of the mean wind pressure coefficients of center part of Shenzhen Citizen Center long-span roof spatial latticed structure. Furthermore, a brief discussion about difference between the wind pressure power spectrum from the wind tunnel experiments and that from the full-scale in-site measurements is compared. The result is important fundament of wind-induced dynamic response of long-span spatial latticed structures.