• Title/Summary/Keyword: construction labor productivity

Search Result 178, Processing Time 0.022 seconds

Analysis of Excavation Speed and Direct Construction Cost Based on the Operating Productivities of TBM Method Site - Diameter 5.0m Target (수로터널공사의 효율성 분석을 통한 굴진속도 및 직접공사비 분석 - 구경 5.0m 중심으로)

  • Park, Hong Tae;Lee, Yang Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.328-335
    • /
    • 2012
  • The resource-based estimating based on standard unit price of construction work was estimated by multiplying the price per standard unit of work on the amount of labor, material, equipment use time. However, limitation of the resource-based estimating way does not adequately reflect the actual transactions prices. On the subject of water tunnel excavation as a new attempt to overcome these limitations, this study analyzed productivity by work type into cutter inspection/ exchange, TBM maintenance, TBM inspection/refueling, subsequent installations, tramcar, operating change, a cave-underground reinforcement / rock reinforcement, safety / meetings and analyzed actual cost estimating and the net advance rate based on this analysis result. Actual cost estimating calculation approach presented in this study can be utilized as a useful tool to predict the actual cost estimating in the TBM water tunnels field.

Cutting-Line Sensing Methods for an Automated Concrete Pile Cutter (파일 두부정리 자동화 장비를 위한 두부정리선 센싱 방법)

  • Kim, Sung-Keun;Kim, Young-Suk;Lee, Junbok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.985-993
    • /
    • 2006
  • The use of prefabricated concrete piles have been gradually increased in many construction sites. One of main works for building a concrete pile foundation is to crush a part of pile head which is compressed with more than $800kg/cm^2$. A pile cutting work is usually performed by a crusher and three to four skilled workers. Recent reports on the pile cutting work reveal that a lot of cracks which significantly reduce the strength of the pile and are frequently made during pile cutting operations and it is very repetitive and labor intensive work. To improve productivity, safety, and quality of the conventional concrete pile cutting work, the research on developing an automated concrete pile cutter has been performed. In this paper, sensing methods for detecting a pile cutting line are suggested with operation process algorithms. The suggested methods are very important to develop the automated pile cutter. A pilot-type of the automated pile cutter that adopt one of the suggested sensing methods, is developed and tested in a construction site.

A Path Generation Method Considering the Work Behavior of Operators for an Intelligent Excavator (운전자의 작업행태를 고려한 지능형 굴삭기의 이동경로 생성 방법)

  • Kim, Sung-Keun;Koo, Bonsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.433-442
    • /
    • 2010
  • Recent decrease in the availability of experienced skilled labor and a corresponding lack of new entrants has required the need for automating many of the construction equipment used in the construction industry. In particular, excavators are widely used throughout earthwork operations and automating its tasks enables work to be performed with higher productivity and safety. This paper introduces an optimal path generation method which is one of the core technologies required to make "Intelligent" excavators a reality. The method divides a given earthwork area into unit cells, identifies networks created by linking these cells, and identifies the optimal path an excavator should follow to minimize its total transportation costs. In addition, the method also accounts for drainage direction and path continuity to ensure that the generated path considers site specific conditions.

The Development of an End-Effector in Automated Pavement Crack Sealer and Technical Feasibility Analysis (도로면 크랙실링 자동화 장비 말단장치의 요구성능 분석을 통한 설계·제작 및 기술적 타당성 분석)

  • Lee, Jeong-Ho;Lee, Won-Jae;Yoo, Hyun-Seok;Kim, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4D
    • /
    • pp.367-376
    • /
    • 2012
  • Crack sealing is a maintenance technique commonly used to prevent water and debris penetration and reduce future degradation in pavement. The conventional crack sealing operations are, however, dangerous, costly, and labor-intensive. Automating crack sealing will improve productivity and quality, and offer safety benefits by getting worker off the road. During the last two decades, several teleoperated and machine-vision assisted systems have been developed to automate the overall process of routing and sealing pavement cracks. However, the developed systems have not been commonly used in the construction sites because of the technical problems. Especially, the performance of end-effector, related to the productivity and quality improvement, is very important factor to improve the practical use of the developed systems. The main objective of this research is to develop an end-effector in automated pavement crack sealing machine and to analyze the technical feasibility of the developed end-effector.

An Inquiry into Agricultural Development Theory (1) - Fei-Ranis's Historical Approach and its Relevance to Less Developed World - (농업발전(農業發展) 이론연구(理論硏究) (I) - Fei-Ranis의 경제사적(經濟史的) 접근방법(接近方法)을 중심(中心)으로 -)

  • Lee, Ho Chol
    • Current Research on Agriculture and Life Sciences
    • /
    • v.1
    • /
    • pp.239-253
    • /
    • 1983
  • This study attempted to introduce Fei-Ranis's agricultural development theory and discuss its problem for the rural development of less developed world. Fei-Ranis systematized the development process of Western European economy on the ground of dualism. They divided the process into 4 stages by the concept of 'mode of operation'. Paticularly, they consider agrarian mercantilism as take-off stage and its development were achieved by the increase of trade margin and labor productivity. Especially, they thought that only agricultural revolution through the diffusion of internal exchange economy and construction of tree-star system can accomplish favorable transition to industrial capitalism. In order to promote this agricultural development, less developed world must abolish short-run agricultural policy and propel 'learning by the contact' strategy through 'tree-star system' and 'parellel development.' In reality, it was problematic that the contemporary less developed world is trying, in the course of a few decades, to imitate Western European experience with development over the last four centuries. But Fei-Ranis ignored qualitative aspects of agricultural development by tree-star system and also it is criticized that they considered agricultural development process of less developed world follows only that of Western European classical process.

  • PDF

Schedule Optimization in Resource Leveling through Open BIM Based Computer Simulations

  • Kim, Hyun-Joo
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • In this research, schedule optimization is defined as balancing the number of workers while keeping the demand and needs of the project resources, creating the perfect schedule for each activity. Therefore, when one optimizes a schedule, multiple potentials of schedule changes are assessed to get an instant view of changes that avoid any over and under staffing while maximizing productivity levels for the available labor cost. Optimizing the number of workers in the scheduling process is not a simple task since it usually involves many different factors to be considered such as the development of quantity take-offs, cost estimating, scheduling, direct/indirect costs, and borrowing costs in cash flow while each factor affecting the others simultaneously. That is why the optimization process usually requires complex computational simulations/modeling. This research attempts to find an optimal selection of daily maximum workers in a project while considering the impacts of other factors at the same time through OPEN BIM based multiple computer simulations in resource leveling. This paper integrates several different processes such as quantity take-offs, cost estimating, and scheduling processes through computer aided simulations and prediction in generating/comparing different outcomes of each process. To achieve interoperability among different simulation processes, this research utilized data exchanges supported by building SMART-IFC effort in automating the data extraction and retrieval. Numerous computer simulations were run, which included necessary aspects of construction scheduling, to produce sufficient alternatives for a given project.

A Study on Performance Analysis of Companies Adopting and Not Adopting Win-win Smart Factories (상생형 스마트공장 도입기업과 미도입기업의 성과분석에 관한 연구)

  • Jungha Hwang;Taesung Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2024
  • A Smart factories are systems that enable quick response to customer demands, reduce defect rates, and maximize productivity. They have evolved from manual labor-intensive processes to automation and now to cyber-physical systems with the help of information and communication technology. However, many small and medium-sized enterprises (SMEs) are still unable to implement even the initial stages of smart factories due to various environmental and economic constraints. Additionally, there is a lack of awareness and understanding of the concept of smart factories. To address this issue, the Cooperation-based Smart Factory Construction Support Project was launched. This project is a differentiated support project that provides customized programs based on the size and level of the company. Research has been conducted to analyze the impact of this project on participating and non-participating companies. The study aims to determine the effectiveness of the support policy and suggest efficient measures for improvement. Furthermore, the research aims to provide direction for future support projects to enhance the manufacturing competitiveness of SMEs. Ultimately, the goal is to improve the overall manufacturing industry and drive innovation.

Technical Advances in Robotic Pavement Crack Sealing Machines and Lessons Learned from the Field (도로면 유지보수를 위한 크랙실링 자동화 로봇의 개발과 응용 -현장적용을 통한 실험 결과 분석을 중심으로-)

  • Kim Young-Suk;Carl T. Haas;Sung Baek-Jun;Oh Se-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.1 s.1
    • /
    • pp.87-94
    • /
    • 2000
  • Crack sealing, a routine and necessary part of pavement maintenance, is a dangerous, costly, and labor-intensive operation. Within the North America, about ${\$}200$ million is spent annually on crack sealing, with the Texas Department of Transportation (TxDOT) spending about ${\$}7$ million annually (labor alone accounts for over 50 percent of these costs). Prompted by concerns of safety and cost, the University of Texas at Austin, in cooperation with TxDOT and the Federal Highway Administration (FHWA) has developed a unique computer-guided Automated Road Maintenance Machine (ARMM) for pavement crack sealing. In 1999, successful field tests have been undertaken in 8 States around the U.S. This paper first describes significance of the automated crack sealing and technical advances in automated crack sealers including the ARMM, developed in the U.S. It then discusses the ARMM's field implementation and performance evaluation results, and improvements and modifications suggested through the technology evaluation during the field trials. Current research efforts and future work plans in its further development are also presented in this paper.

  • PDF

Experimental Study for the Improvement of an Automated PHC Pile Head Cutter (PHC 파일 두부정리 자동화 장비 개선에 관한 실험적 연구)

  • Lee Jeong-Ho;Kim Myoung-Ho;Kim Young-Suk;Cho Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.142-151
    • /
    • 2005
  • Several advanced countries have been continually developed PHC pile cutting automation machines for improving productivity, safety and quality of the conventional PHC pile cutting work. However, the target work of the previously developed PHC pile cutting automation machines is only crushing the head of PHC pile. Dangerous grinding work is still performed by workers with seven inch hand grinder. In domestic construction industry, the PHC pile cutting work is usually performed by a crusher and three to four skilled workers. Recent analysis results of the PHC pile cutting work reveal that it frequently makes a lot of cracks which significantly reduce the strength of the pile and is labor-intensive work. The primary objective of this study is to propose the end-effector which can effectively break PHC pile without any longitudinal cracks and to develop an automated pile cutting machine having unified grinder and crusher parts through a wide variety of laboratory and field tests. It is anticipated that the development of the automated pile cutting machine would be able to bring improvements in safety, productivity, quality as well as cost saving.

Preliminary Study of Modulization Construction Method on Concrete Structure for High-rise Building (고층 콘크리트 구조물 모듈화 시공 시스템 기초연구)

  • Koh, Min-Hyeok;Cho, Chang-Yeon;Shin, Tae-Hong;Kwon, Soon-Wook;Kim, Yea-Sang;Chin, Sang-Yoon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.334-339
    • /
    • 2008
  • Construction that over 70% of the structure consists of concrete gets bigger and higher gradually and the demand of that is increasing as well. However, it's not easy to supply young and skilled persons on construction site because of social avoidance phenomena about 3D occupation, so it causes serious problems like aging and shortage of technicians. To solve the problems, executives related to the construction field make a management effort in various ways such as construction period shortening, labor productivity improvement and good quality but recently, they have an increasing interest in the necessity of the modularization of the high-rise building and the automation of the engineering development for the strengthening of international competitive power as more active and long-term alternatives. Therefore, this study is to propose the roadmap in order to make lots of efforts in developing construction technologies of high-rise buildings by performing a foundation study, the strategy for 4-step research development, on modularized construction system of concrete structure of high-rise buildings through domestic and foreign preceding research analyses associated with optimal design modularization technique, module factory automation and assembly automation of modularized objects.

  • PDF