• Title/Summary/Keyword: construction inspection

Search Result 1,090, Processing Time 0.027 seconds

Modelling on the Carbonation Rate Prediction of Non-Transport Underground Infrastructures Using Deep Neural Network (심층신경망을 이용한 비운송 지중구조물의 탄산화속도 예측 모델링)

  • Youn, Byong-Don
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.220-227
    • /
    • 2021
  • PCT (Power Cable Tunnel) and UT (Utility Tunnel), which are non-transport underground infrastructures, are mostly RC (Reinforced Concrete) structures, and their durability decreases due to the deterioration caused by carbonation over time. In particular, since the rate of carbonation varies by use and region, a predictive model based on actual carbonation data is required for individual maintenance. In this study, a carbonation prediction model was developed for non-transport underground infrastructures, such as PCT and UT. A carbonation prediction model was developed using multiple regression analysis and deep neural network techniques based on the actual data obtained from a safety inspection. The structures, region, measurement location, construction method, measurement member, and concrete strength were selected as independent variables to determine the dependent variable carbonation rate coefficient in multiple regression analysis. The adjusted coefficient of determination (Ra2) of the multiple regression model was found to be 0.67. The coefficient of determination (R2) of the model for predicting the carbonation of non-transport underground infrastructures using a deep neural network was 0.82, which was superior to the comparative prediction model. These results are expected to help determine the optimal timing for repair on carbonation and preventive maintenance methodology for PCT and UT.

A Review of In-Situ Characterization and Quality Control of EDZ During Construction of Final Disposal Facility for Spent Nuclear Fuel (사용후핵연료 최종처분장 건설과정에서의 굴착손상영역(EDZ)의 현장평가 방법 및 시공품질관리 체계에 관한 사례검토)

  • Kim, Hyung-Mok;Nam, Myung Jin;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.107-119
    • /
    • 2022
  • Excavation-Disturbed Zone (EDZ) is an important design factor in constructing final disposal facilities for spent nuclear fuel, since EDZ affects mechanical stability including a spacing between disposal holes, and the hydraulic properties within EDZ plays a significant role in estimating in-flow rate of groundwater as well as a subsequent corrosion rate of a canister. Thus, it is highly required to characterize in-situ EDZ with precision and control the EDZ occurrence while excavating disposal facilities and constructing relevant underground research facilities. In this report, we not only reviewed EDZ-related researches carried out in the ONKALO facility of Finland but also examined appropriate methods for field inspection and quality control of EDZ occurrence. From the review, GPR can be the most efficient method for in-situ characterization of EDZ since it does not demand drilling a borehole that may disturb a surrounding environment of caverns. And the EDZ occurrence was dominant at a cavern floor and it ranged from 0 to 70 cm. These can provide useful information in developing necessary EDZ-related regulations for domestic disposal facilities.

Condition Estimation of Facility Elements Using XGBoost (XGBoost를 활용한 시설물의 부재 상태 예측)

  • Chang, Taeyeon;Yoon, Sihoo;Chi, Seokho;Im, Seokbeen
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.1
    • /
    • pp.31-39
    • /
    • 2023
  • To reduce facility management costs and safety concerns due to aging of facilities, it is important to estimate the future facilities' condition based on facility management data and utilize predictive information for management decision making. To this end, this study proposed a methodology to estimate facility elements' condition using XGBoost. To validate the proposed methodology, this study constructed sample data for road bridges and developed a model to estimate condition grades of major elements expected in the next inspection. As a result, the developed model showed satisfactory performance in estimating the condition grades of deck, girder, and abutment/pier (average F1 score 0.869). In addition, a testbed was established that provides data management function and element condition estimation function to demonstrate the practical applicability of the proposed methodology. It was confirmed that the facility management data and predictive information in this study could help managers in making facility management decisions.

Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels (전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증)

  • Jung Joo Kim;Hee Hwan Ryu;Seung Woo Song;Seung Chul Do;Ji Yun Lee;Ho Young Jeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.91-111
    • /
    • 2024
  • Most of utility cable tunnels are constructed utilizing shield TBM as part of the underground transmission line project. The TBM chamber is the only space inside the tunnel that encounters rock and soil, and is the place with the highest frequency of accident exposure, such as collapse and collision accidents. Since there is currently no way to measure the disc cutter wear from outside the chamber, frequent inspection by workers is essential. Accordingly, in this study, in order to prevent safety accidents inside the TBM chamber and expect the effect of shortening the construction period by reducing the number of chamber openings, the concept of disk cutter wear measurement technology was established and a prototype was produced. By considering prior technology and determining that magnetic sensors are most suitable for the excavation environment, wear measurement sensor package were developed integrating magnetic sensors, wireless communication modules, power supply, external casing, and monitoring systems. To verify the performance of the prototype in an actual excavation environment, a full-scale tunnelling test was performed using a 3.6 m EPB shield TBM. Based on the full-scale tests, five prototypes were operated normally among eight prototypes. It was analyzed that sensor measurement, wireless communication, and durability performance were secured within a maximum thrust of 3,000 kN and a rotation speed of 1.5 RPM.

Efficiency Test for Surface Protecting Agents for the Chemical Resistance of Concrete Structures Using Sulfur Polymers (Sulfur Polymer를 사용한 콘크리트 구조물용 내화학성 표면보호재의 성능 평가)

  • Lee, Byung-Jae;Lee, Eue-Sung;Chung, Woo-Jung;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2014
  • Structures requiring chemical resistance are usually coated with surface protecting agents, but the cost for maintenance and re-construction is incurred due to the low durability. Therefore, in this study, sulfur was polymerized and the performance was examined so that it could be used as the concrete surface protecting agents for structures requiring chemical resistance. The evaluation results indicated that for the spray of the sulfur polymer surface coating agents, the application of the gravity type was appropriate; and for the number of coating times, about 3 cycle spray gave the best results. For the surface condition of the concrete to be coated with the surface protecting agents, outstanding quality was obtained above room temperature ($20{\sim}30^{\circ}C$), and the bond strength increased as the temperature increased. The evaluation results of the strength characteristics depending on the filler content of the surface protecting agents indicated that about 20~40% filler mixing contributed to the strength improvement as it reduced the shrinkage of the sulfur polymer. Also, the mixing of silica showed larger increase in the bond strength than the mixing of fly ash, and the most outstanding bond strength characteristics could be obtained by the mixing of both silica and fly ash. In the case of the chemical resistance, the strength reduction was minimized and outstanding chemical resistance was obtained when the fly ash and silica were substituted by 20%, respectively. The performance evaluation of the chloride ion penetration indicated that for the specimens coated with the sulfur polymer surface protecting agents, the chloride ion penetration resistance increased by 29~48% compared to the specimen without the coating of the surface protecting agent. The examination of the coating condition of the surface protecting agents, compressive strength, bond strength, chemical resistance, and salt damage resistance indicated that in the range of this study, the optimal level was when the silica and fly ash were substituted by 20%, respectively, as the filler for the sulfur polymer.

Effects of Magnesium on Sulfate Resistance of Alkali-activated Materials (알칼리 활성화 결합재의 황산염 침식에 미치는 마그네슘의 영향)

  • Park, Kwang-Min;Cho, Young-Keun;Ra, Jung-Min;Kim, Hyung-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.109-116
    • /
    • 2017
  • This paper describes the investigation into the durability alkali-activated materials(AAM) mortar and paste samples manufactured using fly-ash(FA) and ground granulated blast furnace slag(GGBFS) exposed to a sulfate environment with different GGBFS replace ratios(30, 50 and 100%), sodium silicate modules($Ms[SiO_2/Na_2O]$ 1.0, 1.5 and 2.0). The tests involved immersions into 10% sodium sulfate solution($Na_2SO_4$), 10% magnesium sulfate solution($MgSO_4$), 10% magnesium nitrate solution($Mg(NO_3)_2$) and 5% magnesium nitrate($Mg(NO_3)_2$+5% sodium sulfate solution+$Na_2SO_4$). The evolution of compressive strength, weight, length expansion and microstructural observation such as x-ray diffraction were studied. As a results, in case of immersed in $Na_2SO_4$, $Mg(NO_3)_2$ and $Mg(NO_3)_2+Na_2SO_4$ shows increase in long-term strength. However, for samples immersed in $MgSO_4$, the general observation was that the compressive strength decreased after immersion. The most drastic reduction of compressive strength and expansion of weight and length occurred when GGBFS or Ms ratios were higher. Also, the XRD analysis of samples immersed in magnesium sulfate indicated that expansion of AAM caused by gypsum($CaSO_4{\cdot}2H_2O$) and brucite(MgOH). The results showed that, an additional condition $Mg^{2+}$ in which ${SO_4}^{2-}$ is the presence of a certain concentration, sulfate erosion has to be accelerated.

Structural Behavior of Slab in the Partial Demolition for the Apartment Remodeling (아파트 리모델링을 위한 부분해체에서 슬래브의 구조적 거동)

  • Choi, Hoon;Joo, Hyung Joong;Kim, Hyo Jin;Yoon, Soon Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.19-30
    • /
    • 2012
  • Due to the fact that the social environment is improved and the urban development is stabilized, the demand of new construction of apartment becomes slowdown. Accordingly, there are many researches to lengthen the service life of the existing apartment through the remodeling and its importance is continuously rising. However, reliable design specifications and guidelines for the design of remodeling with partial demolition are not provided yet in Korea. Specially, in the apartment remodeling, slab collapse accidents take major portion in all accidents that reported by Korean Government. It is very important to prevent intial crack of slab because intial crack could cause severe accident like collapse of all structure in a short period of time. The purpose of this study is to develop structural guidelines that could guarantee the structural safety and serviceability of slab structure and could be adopted in Korean remodeling with partial demolition. There are mainly two components to determine structural behavior of slab structure. One is the shape of slab structure and the other is load which is resisted by the slab structure. In this study, the weight per unit volume of concrete debris and concrete strength are estimated through the analysis of previous researches to recognize the relationship between the shape of slab and load that loaded on the slab. Accordingly, approximately 300 pieces of floor plan are collected and analyzed. The finite element analysis is conducted using these analyzed and estimated results. From the finite element analysis results, the limited stacking height of debris is suggested and the stacking method is also discussed. In addition, to find the relationship between movement of demolition equipment and structural behavior of slab, the static and dynamic loading tests are conducted. From the results of loading tests, the impact factor which will be considered in the remodeling design could be estimated.

Impact Assessment of Flame Retardant on Wooden Building with Dancheong (목조문화재 단청에 방염제가 미치는 영향평가)

  • Kim, Hwan-Ju;Lee, Han-Hyoung;Lee, Hwa-Soo;Chung, Yong-Jae;Han, Kyu-Sung
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.2
    • /
    • pp.56-69
    • /
    • 2016
  • Flame resistant treatment has been applied since 1973 for fire prevention in historical wooden buildings, but several problems, such as whitening and discoloration are constantly occurring in some Dancheong, in spite of evaluation criteria. It is supposed that these phenomena are caused by the stability issue of flame retardant, Dancheong production methods, the residue of chemicals, which were applied in the past, building location environments, etc., but no evaluation and cause inspection has been performed. Therefore, this study aims to verify the effect of flame retardant on Dancheong by producing Pseudo-samples and setting spatial and temporal environment conditions. Pseudo-samples of Dancheong were produced using three methods; the method specified in the Standard Specification of Properties; the method, which is generally used in the site and the traditional method. For different environment conditions of pseudo-samples, the areas were classified into a coastal area and an inland area and the places were classified into a sunny place and a wetland. After applying a flame retardant, annual variations were inspected for 12 months and change aspects were observed through scan and regular observation. In annual variation inspection, various variations like whitening, decolorization, dissolution and exfoliation were found and especially, whitening was most dominant. When the effect of flame retardant depending on the production methods was analyzed, whitening occurred in all the three production methods. It is supposed that this is because calcium(Ca) was contained in the coloring material of each production method and it reacted with phosphorous(P) of flame retardant. When the effect of flame retardant depending on the environment conditions was analyzed, whitening occurred more in the coastal area than in the inland area and it reduced in the building in a sunny place, which was constructed using the traditional method. It is supposed that this results from the humidity change and the difference of glue used in each production method. In conclusion, for using a flame retardant containing phosphorous(P), there is a need to check if calcium components including Oyster Shell White were used in Dancheong in advance and to conduct various preliminary studies on place conditions and Dancheong construction conditions.

An Experimental Study on the Strength of Deep Mixing Specimen According to the Stabilizer Content (안정재 혼합비에 따른 심층혼합 시료의 압축강도에 관한 실험적 연구)

  • Park, Choon-Sik;Kim, Jong-Hwan;Kim, Jung-Joo;Baek, Jin-Sool
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • In this study, laboratory test was carried out on uniaxial compressive strength by making 320 specimens in total, which were divided into two groups considering the curing time of 7 and 28 days for 80 cases mixed with stabilizers of 8%, 10%, 12%, 14% of 20 cases of clayey, sandy, and gravel mixed ground conditions to understand laboratory strength characteristics of deep mixing specimen for field application in various ground conditions. As a laboratory result, all specimen showed a clear tendency to have uniaxial compressive strength increase as the curing time and the stabilizer mixing ratio increased, and the strength increments depending on the age by ground types were, around 40.0% for clayey and gravel mixed grounds, 48.4% for sandy grounds which was the highest, and for the increment of stabilizers, around 37.0% for grounds with mixing ratio less then 14%, and 49.6% when the ratio was 14% which was the highest. Also, with sandy grounds, it showed a tendency to have a constant amount of strength increment as the stabilizer mixing ratio increased, for clayey mixed grounds, the strength increment tendency seemed to be similar to gravel mixed grounds. Due to these tendencies, it is concluded that we are able to propose a stabilizer mixing ratio for various ground conditions.

Study on the Introduction of Safety Management Level Evaluation System for Shipping Company by Imitation Strategy (모방전략을 이용한 해운선사 안전관리 수준 평가제도 도입방안 연구)

  • Kim, Hwa-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.366-374
    • /
    • 2013
  • Maritime transportation circumstance is changing rapidly in accordance with the increase of cargo volume between countries and increase of marine leisure activities by improvement of quality of life. And the circumstance for ship operation is also changing due to aging of seafarers and increasing of foreign seafarers. To cope with such changes in maritime environment well, it requires higher safety management skills from shipping companies, the main subject in charge of the safety matter. In this paper, we analyzed domestic and foreign similar system, and then applied imitation strategies for introduction of an unific evaluation and management system that was consist of marine accidents, port state control, ISM Code and so on from shipping companies. We defined that the imitation industry and system are converted accident ration of construction industry and traffic safety excellence company of road transportation, and then extracted relevant law, evaluation index, incentive system as a imitation subject. We also proposed scheme that introduction of basis law, and evaluation tool with marine accidents ratio, port state control & ism code result, and incentives such as immunity of safety inspection or reduction of commission for introduction of company's safety management level evaluation system. Finally, we proposed the imitation timing and plan in stages for system's sustainable development through the prompt introduction and continuous enforcement.