• Title/Summary/Keyword: construction engineering technology

Search Result 6,983, Processing Time 0.038 seconds

Construction of a Microsatellite DNA Profile Database for Pear Cultivars and Germplasm (배 품종 및 유전자원에 대한 Microsatellite DNA 프로파일 데이터베이스 구축)

  • Hong, Jee-Hwa;Shim, Eun-Jo;Kwon, Yong-Sham
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.98-107
    • /
    • 2017
  • A DNA profile database was constructed to investigate the genetic relatedness of 72 germplasm samples of Pyrus and related cultivars using microsatellite markers. Three P. pyrifolia, four P. commus, and one P. betulifolia cultivars with different morphological traits were screened using 387 pairs of microsatellite primers. A core set of 11 primer pairs was selected to obtain 133 polymorphic amplified fragments meeting three criteria: high polymorphism information contents (PIC), high repeatability, and distinct allele patterns. The number of alleles per locus ranged between 4 and 22. Average PIC was 0.743 (range: 0.557 - 0.879). Cluster analysis using the unweighted pair - group method with arithmetical average (UPGMA) separated the 72 pear cultivars and germplasm samples into four major groups: Chinese, European pears, and a cluster of 55 Asian pears that could be reclassify into two subcluster, I - $1^{st}$ and II - $2^{nd}$, according to pedigree information. Almost all of the cultivars were discriminated by 11 microsatellite marker genotypes. The microsatellite DNA profile database may be utilized as tool to verify distinctness, uniformity, and stability between candidate cultivar, and to verify in the distinctness of existing cultivars.

ANALYSIS OF THE TRANSPORTATION LOGISTICS FOR SPENT NUCLEAR FUEL IN KOREA

  • Lee, Hyo-Jik;Ko, Won-Il;Seo, Ki-Seok
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.582-589
    • /
    • 2010
  • As a part of the back-end fuel cycle, transportation of spent nuclear fuel (SNF) from nuclear power plants (NPPs) to a fuel storage facility is very important in establishing a nuclear fuel cycle. In Korea, the accumulated amount of SNF in the NPP pools is troublesome since the temporary storage facilities at these NPP pools are expected to be full of SNF within ten years. Therefore, Korea cannot help but plan for the construction of an interim storage facility to solve this problem in the near future. Especially, a decision on several factors, such as where the interim storage facility should be located, how many casks a transport ship can carry at a time and how many casks are initially required, affect the configuration of the transportation system. In order to analyze the various possible candidate scenarios, we assumed four cases for the interim storage facility location, three cases for the load capacity that a transport ship can carry and two cases for the total amount of casks used for transportation. First, this study considered the currently accumulated amount of SNF in Korea, and the amount of SNF generated from NPPs until all NPPs are shut down. Then, how much SNF per year must be transported from the NPPs to an interim storage facility was calculated during an assumed transportation period. Second, 24 candidate transportation scenarios were constructed by a combination of the decision factors. To construct viable yearly transportation schedules for the selected 24 scenarios, we created a spreadsheet program named TranScenario, which was developed by using MS EXCEL. TranScenario can help schedulers input shipping routes and allocate transportation casks. Also, TranScenario provides information on the cask distribution in the NPPs and in the interim storage facility automatically, by displaying it in real time according to the shipping routes, cask types and cask numbers that the user generates. Once a yearly transportation schedule is established, TranScenario provides some statistical information, such as the voyage time, the availability of the interim storage facility, the number of transported casks sent from the NPPs, and the number of transported casks received at the interim storage facility. By using this information, users can verify and validate a yearly transportation schedule. In this way, the 24 candidate scenarios could be constructed easily. Finally, these 24 scenarios were compared in terms of their operation cost.

OVERVIEW OF KSTAR INTEGRATED CONTROL SYSTEM

  • Park, Mi-Kyung;Kim, Kuk-Hee;Lee, Tae-Gu;Kim, Myung-Kyu;Hong, Jae-Sic;Baek, Sul-Hee;Lee, Sang-Il;Park, Jin-Seop;Chu, Yong;Kim, Young-Ok;Hahn, Sang-Hee;Oh, Yeong-Kook;Bak, Joo-Shik
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.451-458
    • /
    • 2008
  • After more than 10 years construction, KSTAR (Korea Superconducting Tokamak Advanced Research) had finally completed its assembly in June 2007, and then achieved the goal of first-plasma in July 2008 through the four month's commissioning. KSTAR was constructed with fully superconducting magnets with material of $Nb_3Sn$ and NbTi, and their operation temperatures are maintained below 4.5K by the help of Helium Refrigerator System. During the first-plasma operation, plasmas of maximum current of 133kA and maximum pulse width of 865ms were obtained. The KSTAR Integrated Control System (KICS) has successfully fulfilled its missions of surveillance, device operation, machine protection interlock, and data acquisition and management. These and more were all KSTAR commissioning requirements. For reliable and safe operation of KSTAR, 17 local control systems were developed. Those systems must be integrated into the logically single control system, and operate regardless of their platforms and location installed. In order to meet these requirements, KICS was developed as a network-based distributed system and adopted a new framework, named as EPICS (Experimental Physics and Industrial Control System). Also, KICS has some features in KSTAR operation. It performs not only 24 hour continuous plant operation, but the shot-based real-time feedback control by exchanging the initiatives of operation between a central controller and a plasma control system in accordance with the operation sequence. For the diagnosis and analysis of plasma, 11 types of diagnostic system were implemented in KSTAR, and the acquired data from them were archived using MDSpius (Model Driven System), which is widely used in data management of fusion control systems. This paper will cover the design and implementation of the KSTAR integrated control system and the data management and visualization systems. Commissioning results will be introduced in brief.

A Study On The Thermal Movement Of The Reactor Coolant System For PWR (가압 경수로의 냉각재 계통 열팽창 거동에 관한 연구)

  • Yoon, Ki-Seok;Park, Taek sang;Kim, Tae-Wan;Jeon, Jang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.393-402
    • /
    • 1995
  • The structural analysis of the reactor coolant system mainly consist of too fields. The one is the static analysis considering the impact of pressure and temperature built up during normal operation. The other is the dynamic analysis to estimate the impact of postulated events such as the seismic loads or postulated branch line pipe breaks event. Since the most important goal of the RCS structural analysis is to prove the safety of the RCS during normal operation or postulated events, a widely proven theory having enough conservatism is adopted. The load occurring on the RCS during normal operation is considered as the basic design loading condition throughout whole plant life time. The most typical characteristic of the RCS during normal operation is the thermal expansion of the RCS caused by reactor coolant with high temperature and pressure. Therefore, the exact estimation on the thermal movement of the RCS is needed to get more clear understanding on the thermal movement behavior of the RCS. In this study, the general structural analysis concept and modeling method to evaluate the thermal movement of the RCS under the normal plant operation condition are presented. To discuss the validation of the suggested analysis, analysis results are compared with the measured data which ore referred from the standardized 1000 MWe PWR plant under construction.

  • PDF

Analysis of Soil Erosion Hazard Zone by R Factor Frequency (빈도별 R인자에 의한 토양침식 위험지역 분석)

  • Kim, Joo-Hun;Oh, Deuk-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.2
    • /
    • pp.47-56
    • /
    • 2004
  • The purpose of this study is to estimate soil loss amount according to the rainfall-runoff erosivity factor frequency and to analyze the hazard zone that has high possibilities of soil erosion in the watershed. RUSLE was used to analyze soil loss quantity. The study area is Gwanchon that is part of Seomjin river basin. To obtain the frequency rainfall-runoff erosivity factor, the daily maximum rainfall data for 39 years was used. The probability rainfall was calculated by using the Normal distribution, Log-normal distribution, Pearson type III distribution, Log-Pearson type III distribution and Extreme-I distribution. Log-Pearson type III was considered to be the most accurate of all, and used to estimate 24 hours probabilistic rainfall, and the rainfall-runoff erosivity factor by frequency was estimated by adapting the Huff distribution ratio. As a result of estimating soil erosion quantity, the average soil quantity shows 12.8 and $68.0ton/ha{\cdot}yr$, respectively from 2 years to 200 years frequency. The distribution of soil loss quantity within a watershed was classified into 4 classes, and the hazard zone that has high possibilities of soil erosion was analyzed on the basis of these 4 classes. The hazard zone represents class IV. The land use area of class IV shows $0.01-5.28km^2$, it ranges 0.02-9.06% of total farming area. Especially, in the case of a frequency of 200 years, the field area occupies 77.1% of total fanning area. Accordingly, it is considered that soil loss can be influenced by land cover and cultivation practices.

  • PDF

Geosynthetic Reinforced Soil Method for Restoration of Debris Flow Failure Slopes (쇄설성 유동파괴 사면 복구를 위한 토목섬유 보강토 공법)

  • Cho Yong-Seong;Kim You-Seong;Park Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.93-101
    • /
    • 2005
  • The formation of slopes is unavoidable under the special circumstance of Korea where $7%$ of the whole area are composed of mountains and civil engineering projects such as road and site developments are increasing with industrial development and horizontal expansions of urban area. Stability of slopes is one of quite important issues under special meteorological characteristics that over two-thirds of annual average rainfall is concentrated in summer season and the localized torrential downpour is getting more frequent recently. As a result of these circumstances, partial slope failures by debris flow of the high water content soils occur frequently in cut soil slopes. In this case of debris flow slope failure, slope declination method is selected fur the stable recovery because it is impossible to recover entirely by existing recovery methods. Seeding or special grass planting methods are followed separately without exception. The method by which entire recover with bigger stability ratio would be possible and grass planting work would be done simultaneously is developed. For debris flow failure slopes, this study secured the safety of slopes by preventing the inflow of rainwater and scour using geosynthetics-reinforced embankment, and created nature-friendly slopes by planting trees on the slopes.

Effects of irradiation periods on the Lettuce Growth (광원 조사기간이 상추생육에 미치는 영향)

  • Kim, Dong-Eok;Kim, Bong-Soo;Kim, Hyun-Bae;Yoon, Yong-Cheol;Kim, Chi-Ho;Kim, Hyeon-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.4
    • /
    • pp.459-466
    • /
    • 2012
  • The objective of this study is to observe growth pattern of grand rapids(lettuce) according to different dexperimental conditions for minimizing its growth period such as composition of nutrient, irradiation time of light source and cultivation mode. The culture of water spray type using seeds of grand rapids was performed during growth period of total 50 days. Experimental conditions consist of five compositions of nutrient (PW 0.5 mS/cm, PW 1.0 mS/cm, PY 0.5 mS/cm, PY 1.0 mS/cm, PW 2.0 mS/cm) and three irradiation times of light source (12h(on) / 12h(off), 18h(on) / 06h(off), 24h(on) / 00h(off)). Illumination was adjusted to ratio of 7:1:1 of red, blue and white color, respectively. Indoor environmental condition for cultivating grand rapids is as follows: temperature (19-$22^{\circ}C$), relative humidity (60-70%) and carbon dioxide (1,000-1,200 ppm). The data were obtained from five iteration tests. The maximum growth level was observed in the experimental condition of 18 hr(on) / 06 hr(off) and PY 1 mS/cm for 1st week of cultivation period, 24 hr(on) / 00 hr(off) and PY 1mS/cm for 2nd week of cultivation period, and 24 hr(on) / 00hr(off) and PW 1 mS/cm for 3rd week of cultivation period, respectively. On the contrary, the minimum growth level was observed in the experimental condition of 18 hr(on) / 06 hr(off) and PW 0.5 mS/cm for 1st week of cultivation period, 12 hr(on) / 12 hr(off) and PW 0.5 mS/cm for 2nd week of cultivation period, and 12 hr(on) / 12 hr(off) and PY 0.5 mS/cm for 3rd week of cultivation period, respectively. Based on the results obtained from this study, it is concluded that the growth level of grand rapids varied with different irradiation time of light source and composition ratio of nutrient according to cultivation period.

Effect of Chungju Dam Operation for Flood Control in the Upper Han River (충주댐 방류에 따른 댐 상하류 홍수위 영향 분석)

  • Kim, Sang Ho;Kim, Ji-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.537-548
    • /
    • 2013
  • In this study, the hydraulic channel routing model was constructed to analysis the effect of flood control with the operation of Chungju Dam for 2006 flood. Study area was divided with up- and downstream of Chungju Dam in the upper Han River of Paldang Dam. The model was calibrated and verified for the flood event of 1995-2008. The effects of flood control of Chungju Dam were compared with the simulation results without the dam, and the rising effects of stage in the main observation stations were analyzed by the variation of released dam discharge. Consequently, the operation of Chungju Dam for 2006 flood was performed properly, but the effects of flood control of Chungju Dam were so focused in downstream of the dam that institutional complement was demanded to reduce the flood damage in the upper region of the dam. The limit of decision rule of downstream stage in the backwater region of dam was analyzed to solve the problem, and the decision rule of downstream stage was proposed to consider the discontinuity between the backwater region of dam and the design flood of upper stream. The proposed rule will be used to design the reduction of flood damage in upper stream of dam and to apply the analysis of region for flood damage.

Estimation of Road Capacity at Two-Lane Freeway Work Zones Considering the Rate of Heavy Vehicles (중차량 비에 따른 편도 2차로 고속도로 공사구간 도로 용량 추정)

  • Ko, Eunjeong;Kim, Hyungjoo;Park, Shin Hyoung;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.48-61
    • /
    • 2020
  • The objective of this study is to estimate traffic capacity based on the heavy-vehicle ratio in a two-lane freeway work zone where one lane is blocked by construction. For this, closed circuit television (CCTV) video data of the freeway work zone was collected, and the congestion at an upstream point was observed. The traffic volume at a downstream point was analyzed after a bottleneck was created by the blockage due to the upstream congestion. A distribution model was estimated using observed-time headway, and the road capacity was analyzed using a goodness-of-fit test. Through this process, the general capacity and an equation for capacity based on the heavy-vehicle ratio passing through the work zone were presented. Capacity was estimated to be 1,181~1,422 passenger cars per hour per lane (pcphpl) at Yeongdong, and 1,475~1,589pcphpl at Jungbu Naeryuk. As the ratio of heavy vehicles increased, capacity gradually decreased. These findings can contribute to the proper capacity estimation and efficient traffic operation and management for two-lane freeway work zones that block one lane due to a work zone.

Development of Qual2E Interface System Coupled with HyGIS (HyGIS와 Qual2E의 연계 시스템 개발)

  • Park, In-Hyeok;Kim, Kyung-Tak;Ha, Seong-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.96-108
    • /
    • 2011
  • Going abreast of high public concerns on the environment, the need of environmental modeling has been increased to assess the impact of space exploitation of environment. GIS offers potential solutions to the many problems encountered during water-quality modeling. But there are also many problems associated with the modeling. The preparation of necessary parameters for the modeling can be complicated. Also, the results from one model can be different from each other even the same area is analyzed. This paper aims to develop the data processing system to couple the Qual2E and HyGIS in which Qual2E input and output data files can be created, modified and processed using HyGIS and assess the performance of the system. A structural analysis and standardization of modeling are conducted to identify data flow and processing of Qual2E. Algorithms of the defined processors are designed and developed as component modules. The data model of HyGIS-Qual2E is designed, and GUI(Graphical User Interface) is developed using Visual Basic 6.0 and GDK.