• 제목/요약/키워드: construction element

검색결과 2,531건 처리시간 0.032초

Construction sequence modelling of continuous steel-concrete composite bridge decks

  • Dezi, Luigino;Gara, Fabrizio;Leoni, Graziano
    • Steel and Composite Structures
    • /
    • 제6권2호
    • /
    • pp.123-138
    • /
    • 2006
  • This paper proposes a model for the analysis of the construction sequences of steel-concrete composite decks in which the slab is cast-in-situ for segments. The model accounts for early age shrinkage, such as thermal and endogenous shrinkage, drying shrinkage, tensile creep effects and the complex sequences of loading due to pouring of the different slab segments. The evolution of the structure is caught by suitably defining the constitutive relationships of the concrete and the steel reinforcements. The numerical solution is obtained by means of a step-by-step procedure and the finite element method. The proposed model is then applied to a composite deck in order to show its potential.

Structural behavior of precast concrete deck with ribbed loop joints in a composite bridge

  • Shin, Dong-Ho;Chung, Chul-Hun;Oh, Hyun-Chul;Park, Se-Jin;Kim, In-Gyu;Kim, Young-Jin;Byun, Tae-Kwan;Kang, Myoung-Gu
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.559-576
    • /
    • 2016
  • This study is intended to propose a precast bridge deck system, which has ribbed loop joints between the decks and lacks internal tendons to improve the workability of existing precast deck system. A composite bridge deck specimen was fabricated using the proposed precast deck system, and static and fatigue load tests were conducted to evaluate the structural behavior and the crack pattern of the deck. Leakage test of the deck joints was also conducted and finite element analysis was carried out to compare with the test results.

지하철 박스 구조물의 수화열 해석 및 온도균열 제어 방안 (Construction Techniques for Crack Control of Underground Box Structures)

  • 차수원
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.153-159
    • /
    • 2001
  • Recently, the underground reinforced concrete(RC) box structures have been increasingly built in Korea. In such structures, the heat of hydration may cause serious cracking problems. The RC box structures are classified in this category that needs much attention to control the hydration heat during construction, which causes the restraining effects on the boundaries. The purpose of the present study is to develop the rational construction method to control the thermal cracking problem of the box structures. In this study, the causes and mechanism of thermal cracking according to construction stages in the RC box structures are thoroughly analyzed. The major influencing variables are studied through the finite element analysis which affect the thermal cracking of RC box structures. The research results of the present study can be efficiently used for the control of cracking of box structures during construction stages.

  • PDF

SUGGESTING IMPROVEMENT METHODS OF FORM WORK FOR COST REDUCTION IN THE MID-RISE APARTMENT HOUSING

  • Jeongseok Lee;Seunghee Kang;Gunhee Cho;Jeongrak Sohn;Jongdae Bang
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1608-1614
    • /
    • 2009
  • In recent days, the study of urban regeneration has been conducting with purposeful and sincere intent starting out with the residential environment improvement works. Within the range of urban regeneration, the low-cost housing technology means development of totally-integrated housing technology that may be applied to the regeneration project, especially for the rundown areas where infrastructure facilities in the urban zone have been degraded and obsoleted. In line with this, among many and varied methods in order for realization of the low-cost housing as a part of urban regeneration project, this study should like to propose an improvement methods of the key technologies in relation to the construction works by type of work with which construction costs (directing cost) would be reduced. And, in order to elicit the method for element technology that has been developed and improved in the most optimal manner centering on the selected construction work by the type of work, the researcher conducted comparative review of summary of element technologies related to the construction works concerned, characteristics, and construction method thereof. In particular, the researcher investigated the expenses (construction cost and labor cost), constructions (contractibility and productivity), safety, quality of works, and the technical status in environmental aspects, and the researcher also conducted analyses and evaluations thereof.

  • PDF

슬라이딩을 허용하는 다절점 케이블요소 (A Multi-noded Cable Element Considering Sliding Effects)

  • 김문영;이준석;한만엽;김성보;김낙경
    • 한국강구조학회 논문집
    • /
    • 제17권4호통권77호
    • /
    • pp.449-457
    • /
    • 2005
  • 다양한 케이블지지 시스템에 적용이 가능한 슬라이딩을 허용하는 다절점 케이블-트러스 요소를 개발한다. 먼저 일반적인 2절점 케이블-트러스 요소에 대한 유한요소 정식화 과정을 요약하고, 이를 토대로 여러 절점에 연결되어 장력은 동일하지만 절점에서 슬라이딩이 가능한 다절점 케이블-트러스 요소의 탄성강도행렬을 유도한다. 개발된 케이블-트러스 요소를 검증하기 위하여, 케이블 장력을 부정정력으로 선택하고 적합조건을 이용하여 장력을 산정하는 방법(유연도법)을 제시하고 두 방법에 의한 장력 값을 비교한다. 또한 상용 유한요소 해석프로그램의 2절점 트러스요소를 사용한 해석결과와도 비교, 분석한다.

시공단계별 영향을 고려한 터널 전력구의 유한요소해석 (Finite Element Analysis of Underground Electrical Power Cable Structures Considering the Effects of Construction Sequence)

  • 김선훈
    • 한국전산구조공학회논문집
    • /
    • 제26권2호
    • /
    • pp.147-155
    • /
    • 2013
  • 본 논문에서는 도심지 지하에 터널 전력구를 건설하는 경우 시공단계별 영향을 고려한 구조해석을 수행하였다. 해석대상의 도심지 지하에는 여러 종류의 다양한 라이프라인 구조체가 설치되어 있다. 터널전력구의 구조해석에는 지반체의 유한요소해석 프로그램인 MPDAP을 사용하였다. 라이프라인 구조체와 터널 전력구 사이의 이격거리가 가장 작은 대표적인 3개의 단면에 대하여 구조해석을 수행하였다. 터널의 굴착단계별 유한요소해석에서 발생되는 평형불균형성 문제는 평형섭동개념을 적용하여 해결하였다. 또한 터널 굴착에 의한 시간의존 변형의 영향은 하중분담율을 사용하여 시공단계별로 고려하였다. 본 연구에서 검토한 3개의 대표단면에서는 터널 전력구 주변 지반체에서 발생하는 최대변위값은 허용변위값이내를 보여주었다.

Analysis of stress dispersion in bamboo reinforced wall panels under earthquake loading using finite element analysis

  • Kumar, Gulshan;Ashish, Deepankar K.
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.451-461
    • /
    • 2018
  • Present study is mainly concerned about the idea of innovative utilization of bamboo in modern construction. Owing to its compatible mechanical properties, a beneficial effect of its use in reinforced concrete (RC) frame infills has been observed. In this investigation, finite element analyses have been performed to examine the failure pattern and stress distribution pattern through the infills of a moment resisting RC frame. To validate the pragmatic use of bamboo reinforced components as infills, earthquake loading corresponding to Nepal earthquake had been considered. The analysis have revealed that introduction of bamboo in RC frames imparts more flexibility to the structure and hence may causes a ductile failure during high magnitude earthquakes like in Nepal. A more uniform stress distribution throughout the bamboo reinforced wall panels validates the practical feasibility of using bamboo reinforced concrete wall panels as a replacement of conventional brick masonry wall panels. A more detailed analysis of the results have shown the fact that stress concentration was more on the frame components in case of frame with brick masonry, contrary to the frame with bamboo reinforced concrete wall panels, in which, major stress dispersion was through wall panels leaving frame components subjected to smaller stresses. Thus an effective contribution of bamboo in dissipation of stresses generated during devastating seismic activity have been shown by these results which can be used to concrete the feasibility of using bamboo in modern construction.

Coupled thermal and structural analysis of roller compacted concrete arch dam by three-dimensional finite element method

  • Bayagoob, Khaled H.;Noorzaei, Jamaloddin;Abdulrazeg, Aeid A.;Al-Karni, Awad A.;Jaafar, Mohd Saleh
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.401-419
    • /
    • 2010
  • This paper focuses on the development, verification and application of a three-dimensional nite element code for coupled thermal and structural analysis of roller compacted concrete arch dams. The Ostour Arch dam located on Ghezel-Ozan River, Iran, which was originally designed as conventional concrete arch dam, has been taken for the purpose of verication of the nite element code. In this project, RCC technology has been ascertained as an alternative method to reduce the cost of the project and make it competitive. The thermal analysis has been carried out taking into account the simulation of the sequence of construction, environmental temperature changes, and the wind speed. In addition, the variation of elastic modulus with time has been considered in this investigation using Concard's model. An attempt was made to compare the stresses developed in the dam body five years after the completion of the dam with those of end of the construction. It was seen that there is an increase in the tensile stresses after five years over stresses obtained immediately at the end of construction by 61.3%.

Experimental and numerical studies of precast connection under progressive collapse scenario

  • Joshi, Digesh D.;Patel, Paresh V.;Rangwala, Husain M.;Patoliya, Bhautik G.
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.235-248
    • /
    • 2020
  • Progressive collapse in a structure occurs when load bearing members are failed and the adjoining structural elements cannot resist the redistributed forces and fails subsequently, that leads to complete collapse of structure. Recently, construction using precast concrete technology is adopted increasingly because it offers many advantages like faster construction, less requirement of skilled labours at site, reduced formwork and scaffolding, massive production with reduced amount of construction waste, better quality and better surface finishing as compared to conventional reinforced concrete construction. Connections are the critical elements for any precast structure, because in past, major collapse of precast structure took place because of connection failure. In this study, behavior of four different precast wet connections with U shaped reinforcement bars provided at different locations is evaluated. Reduced 1/3rd scale precast beam column assemblies having two span beam and three columns with removed middle column are constructed and examined by performing experiments. The response of precast connections is compared with monolithic connection, under column removal scenario. The connection region of test specimens are filled by cast-in-place micro concrete with and without polypropylene fibers. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection at the location of removed middle column, crack formation and failure propagation. Further, Finite element (FE) analysis is carried out for validation of experimental studies and understanding the performance of structural components. Monolithic and precast beam column assemblies are modeled using non-linear Finite Element (FE) analysis based software ABAQUS. Actual experimental conditions are simulated using appropriate boundary and loading conditions. Finite Element simulation results in terms of load versus deflection are compared with that of experimental study. The nonlinear FE analysis results shows good agreement with experimental results.

건설현장에서 외국인 노동자의 생산성에 관한 연구 -생산성 및 생산성 저해인자 평가를 중심으로- (A Study on Productivity of Foreign Labors in Domestic Apartment Construction Site -Focused on Evaluation of Productivity and Productivity Impediment Factor-)

  • 최희복;신윤석;강경인
    • 한국건축시공학회지
    • /
    • 제5권1호
    • /
    • pp.75-79
    • /
    • 2005
  • The Korean society faces a new issue of accepting foreign workers. Foreign labors in construction industry reached about 400,000 recently. Thus they have become one of the essential resources to fill up insufficient labor supplies in construction industry. And it is important how to manage foreign labors efficiently. However there are few studies focused on this subject. Purpose of this study is to research productivity of foreign labors in the domestic construction site. So investigate the value of foreign labors. Also this study forecast elements effect on foreign labors productivity in the construction industry. And research what element is more important to improve productivity and what element is more difficult to manage. In the result, this study is expected to prospect effective method of foreign labor's management in the domestic construction industry, so contribute to utilize foreign labors more efficiently.