• Title/Summary/Keyword: construction control

Search Result 5,207, Processing Time 0.031 seconds

LoRa LPWAN Sensor Network for Real-Time Monitoring and It's Control Method (실시간 모니터링을 위한 LoRa LPWAN 기반의 센서네트워크 시스템과 그 제어방법)

  • Kim, Jong-Hoon;Park, Won-Joo;Park, Jin-Oh;Park, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.359-366
    • /
    • 2018
  • Social infrastructure facilities that have been under construction since the country's high-growth period are undergoing rapid aging, and safety assessments of large structures such as bridge tunnels, which can be directly linked to large-scale casualties in the event of an accident, are necessary. Wireless smart sensor networks that improve SHM(Structural Health Monitoring) based on existing wire sensors are difficult to construct economical and efficient system due to short signal reach. The LPWAN, Low Power Wide Area Network, is becoming popular with the Internet of Things and it is possible to construct economical and efficient SHM by applying it to structural health monitoring. This study examines the applicability of LoRa LPWAN to structural health monitoring and proposes a channel usage pre-planning based LoRa network operation method that can efficiently utilize bandwidth while resolving conflicts between channels caused by using license - exempt communication band.

Optimum design of steel space truss towers under seismic effect using Jaya algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This study investigates optimum designs of steel space truss towers under seismic loading by using Jaya optimization algorithm. Turkish Earthquake Code (2007) specifications are applied on optimum designs of steel space truss towers under the seismic loading for different local site classes depending on different soil groups. The proposed novel algorithm does not have any algorithm-specific control parameters and depends only a simple revision equation. Therefore, it provides a practical solution for structural optimization problems. Optimum solutions of the different steel truss examples are carried out by selecting suitable W sections taken from American Institute of Steel Construction (AISC). In order to obtain optimum solutions, a computer program is coded in MATLAB in corporated with SAP2000-OAPI (Open Application Programming Interface). The stress and displacement constraints are applied on the design problems according to AISC-ASD (Allowable Stress Design) specifications. Firstly, a benchmark truss problem is examined to see the efficiency of Jaya optimization algorithm. Then, two different multi-element truss towers previously solved with other methods without seismic loading in literature are designed by the proposed algorithm. The first space tower is a 582-member space truss with the height of 80 m and the second space tower is a 942-member space truss of about 95 m height. The minimum optimum designs obtained with this novel algorithm for the case without seismic loading are lighter than the ones previously attained in the literature studies. The results obtained in the study show that Jaya algorithm is a practical and robust optimization method for structural optimization problems. Moreover, incorporation of the seismic loading causes significant increase in the minimum design weight.

Soil Volume Computation Technique at Slope Failure Using Photogrammetric Information (영상정보를 활용한 사면 붕괴 토사량 산정 기법)

  • Bibek, Tamang;Lim, Hyuntaek;Jin, Jihuan;Jang, Sukhyun;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.65-72
    • /
    • 2018
  • The uses of unmanned aerial vehicles (UAV) have been expanding in agriculture surveys, obtaining real time updates of dangerous facilities where human access is difficult, disaster monitoring, and 3D modeling. In reality, there is an upsurge in the application of UAVs in fields like, construction, infrastructure, imaging, surveying, surveillance and transportation. Especially, when the slope failure such as landslide occurs, the uses of UAVs are increasing. Since, the UAVs can fly in three dimensions, they are able to obtain spatial data in places where human access is nearly impossible. Despite of these advantages, however, the uses of UAVs are still limited during slope failure. In order to overcome these limitations, this study computes the soil volume change during slope failure through the computation technique using photogrammetric information obtained from UAV system. Through this study, it was found that photogrammetric information from UAV can be used to acquire information on amount of earthworks required for repair works when slope collapse occurs in mountainous areas, where human access in difficult.

A Study on Reinforcement Method of Reinforced Soil Retaining Wall Through Field Experiment (보강토옹벽의 배부름현상 분석 및 보강 방법에 대한 실험적 연구)

  • Lee, Won-Hong;Mun, Byeong-Jo;Lee, Seuong-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.103-112
    • /
    • 2019
  • This study proposes a system to control the bulging phenomenon occurring in the reinforced earth retaining wall and to evaluate the reliability of the system by field experiment. In this study, drainage facilities were not installed in order to induce reinforcement earth retaining wall bulging, and the bulging was induced by rainfall. The induced bulging displacement exceeded the horizontal displacement criterion during the construction of FHWA. The retaining wall block was drilled and grouting was performed by inserting the nail into the drilling hole. The wire mesh is installed on the reinforcing surface and the head of the nail is connected horizontally so that the blocks of the reinforcing earth retaining wall can be supported with each other. In order to protect the reinforcements, the reinforcement surface was closed with shotcrete and a measuring device was installed to detect the progress of the displacement. After the reinforcement, the bulging were not found to progress any more, confirming the reliability of the system.

Assessment of compressive strength of cement mortar with glass powder from the early strength

  • Wang, Chien-Chih;Ho, Chun-Ling;Wang, Her-Yung;Tang, Chi
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • The sustainable development principle of replacing natural resources with renewable material is an important research topic. In this study, waste LCD (liquid crystal display) glass powder was used to replace cement (0%, 10%, 20% and 30%) through a volumetric method using three water-binder ratios (0.47, 0.59, and 0.71) to make cement mortar. The compressive strength was tested at the ages of 7, 28, 56 and 91 days. The test results show that the compressive strength increases with age but decreases as the water-binder ratio increases. The compressive strength slightly decreases with an increase in the replacement of LCD glass powder at a curing age of 7 days. However, at a curing age of 91 days, the compressive strength is slightly greater than that for the control group (glass powder is 0%). When the water-binder ratios are 0.47, 0.59 and 0.71, the compressive strength of the various replacements increases by 1.38-1.61 times, 1.56-1.80 times and 1.45-2.20 times, respectively, during the aging process from day 7 to day 91. Furthermore, a prediction model of the compressive strength of a cement mortar with waste LCD glass powder was deduced in this study. According to the comparison between the prediction analysis values and test results, the MAPE (mean absolute percentage error) values of the compressive strength are between 2.79% and 5.29%, and less than 10%. Thus, the analytical model established in this study has a good forecasting accuracy. Therefore, the proposed model can be used as a reliable tool for assessing the design strength of cement mortar from early age test results.

Validating Dozer Productivity Computation Models (도저 생산성 연산모델 비교 연구)

  • Kim, Ryul-Hee;Park, Young-Jun;Lee, Dong-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.531-540
    • /
    • 2019
  • Existing dozer productivity computation models use different input variables, formulas, productivity correction factors, and experimental data source. This paper presents a method that characterizes the productivity outputs obtained by the PLS model and the Caterpillar model that are accepted as industry standards. The method identifies the input variables to be collected from the site, the performance charts to be referenced, and the formulas and implements them in a single computational tool. This study verifies that the PLS model may replace the manual computational process of Caterpillar model by eliminating reliance on graphics manipulation. Replacing the Caterpillar model with the PLS model and implementing the process as a function contributes to assess the productivity of a dozer timely by encouraging to utilize real-time information collected directly from the site. This study allows researchers and practitioners to effectively deal with the values of productivity correction factors collected from the job site and to control the productivity. The practicality and effectiveness of the method have been validated by applying to a project case.

Acoustic design principles and the acoustical performance analysis of Incheon International Airport (인천국제공항의 음향설계원리 및 성능분석)

  • Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.275-282
    • /
    • 2019
  • In airport terminal, aural information is transmitted during 24 hours a day including announcement, background music and emergency control. So, clear sound is mostly necessary to transmitted to the passengers in airports. IIA (Incheon International Airport) is one of the largest airports accommodating 45 million people a year which have been built since 2001. There are currently three passenger terminals including Terminal 1 & 2, and boarding concourse. The $2^{nd}$ passenger terminal is under construction to expand the spaces which will be finished in 2020. The present work aims to explain the design principles of both architectural acoustics and electo-acoustics which have been applied to all the terminal buildings in IIA including ticketing counter, great hall, departure concourse and transportation center. Also, the acoustical performances of those spaces were examined. As a result, acoustic standards for airport were suggested. Architectural concepts for designing ceiling spaces and sound absorption treatments were suggested. Also, electro-acoustic design principles were commented.

Construction of a cDNA library of Aphis gossypii Glover for use in RNAi

  • KWON, HyeRi;KIM, JungGyu;LIM, HyounSub;YU, YongMan;YOUN, YoungNam
    • Entomological Research
    • /
    • v.48 no.5
    • /
    • pp.384-389
    • /
    • 2018
  • Aphis gossypii Glover is an important insect pest that functions as a viral vector and mediates approximately 45 different viral diseases. As part of a strategy for control of A. gossypii, we investigated the functions of genes using RNAi. To this end, a cDNA library was constructed for various genes and for selecting appropriate targets for RNAi mediated silencing. The cDNA library was constructed using the Gateway cloning system with site-specific recombination of bacteriophage ${\lambda}$. It was used to carry out single step cloning of A. gossypii cDNAs. As a result, a cDNA library with a titer of $8.4{\times}10^6$ was constructed. Since the sequences in this library carry att sites, they can be cloned into various binary vectors. This library will be of value for various studies. For later screening of selected genes, it is planned to clone the library into virus-induced gene silencing (VIGS) vectors, which makes it possible to analyze gene function and allow subsequent transfection of plants. Such transfection experiments will allow testing of RNAi-induced insecticidal activity or repellent activity to A. gossypii, and result in the identification of target genes. It is also expected that the constructed cDNA library will be useful for analysis of gene functions in A. gossypii.

Construction of Medical Image Information Viewer-Matching System Based by Diseases (질환별 의료영상정보 뷰어 매칭 시스템의 구축)

  • No, Si-Hyung;Ham, Gyu-Sung;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.37-47
    • /
    • 2019
  • The purpose of this paper is to construct a system that matches the patient's image disease information with the medical image viewer in providing the medical image information to the medical staff. Currently, medical image information systems that are commercialized mostly provide only one image viewer with various image information of diseases or use incompatible exclusive viewers. For this reason, we designed and implemented a medical image information viewer matching system that integrates and provides specialized viewers that can be selected by diseases' image information. That is, it is a system to match and view medical image viewers based on disease information extracted from tag information stored as the metadata in DICOM file, which is medical image information standard, for disease-specific viewer matching. We analyzed the execution performances through our retrieval service of medical image information from our implementation system, and showed compatibility and control with various viewers.

Particle Filtration Efficiency Testing of Sterilization Wrap Masks

  • Chau, Destiny F.;O'Shaughnessy, Patrick;Schmitz, Michael L.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.1
    • /
    • pp.31-36
    • /
    • 2021
  • Objectives: Non-traditional materials are used for mask construction to address personal protective equipment shortages during the coronavirus disease 2019 (COVID-19) pandemic. Reusable masks made from surgical sterilization wrap represent such an innovative approach with social media frequently referring to them as "N95 alternatives." This material was tested for particle filtration efficiency and breathability to clarify what role they might have in infection prevention and control. Methods: A heavyweight, double layer sterilization wrap was tested when new and after 2, 4, 6, and 10 autoclave sterilizing cycles and compared with an approved N95 respirator and a surgical mask via testing procedures using a sodium chloride aerosol for N95 efficiency testing similar to 42 CFR 84.181. Pressure testing to indicate breathability was also conducted. Results: The particle filtration efficiency for the sterilization wrap ranged between 58% to 66%, with similar performance when new and after sterilizing cycles. The N95 respirator and surgical mask performed at 95% and 68% respectively. Pressure drops for the sterilization wrap, N95 and surgical mask were 10.4 mmH2O, 5.9 mmH2O, and 5.1 mmH2O, respectively, well below the National Institute for Occupational Safety and Health limits of 35 mmH2O during initial inhalation and 25 mmH2O during initial exhalation. Conclusions: The sterilization wrap's particle filtration efficiency is much lower than a N95 respirator, but falls within the range of a surgical mask, with acceptable breathability. Performance testing of non-traditional mask materials is crucial to determine potential protection efficacy and for correcting misinterpretation propagated through popular media.