• Title/Summary/Keyword: construction control

Search Result 5,207, Processing Time 0.034 seconds

Mapping Inundation Areas by Flash Flood and Developing Rainfall Standards for Evacuation in Urban Settings (GIS를 이용한 도시지역 돌발홍수 침수예상지도 작성 및 대피강우기준 개발)

  • Shin, Sang-Young;Yeo, Chang-Geon;Baek, Chang-Hyun;Kim, Yoon-Jong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.71-80
    • /
    • 2005
  • As local flash flood exceeding planned capacity occurs frequently, localized preparedness and response to flood inundation are increasingly important. Using XP-SWMM model and GIS techniques, this study analyzes inundation areas by local flash flood and develops rainfall standards for evacuation with the case of Sadang-Cheon area, a local stream and its nearby highly populated watershed in the southern part of metropolitan Seoul, Flood inundation areas overflowed from drainage systems are analyzed and mapped by amount of rainfall that is derived from reference levels of stream flow. Rainfall standards for evacuation are comprised of 'watch' (40mm/hr) in preparing for near-future inundation and 'evacuation' (65mm/hr) in responding to realized inundation. The methods suggested by this case study may be applied to other urban areas for sound flood prevention policy measures and thus risk minimization.

  • PDF

Shape Design Sensitivity Analysis Using Isogeometric Approach (등기하 해석법을 이용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.339-345
    • /
    • 2007
  • In this paper, a variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions for response analysis are generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Furthermore, the solution space for the response analysis can be represented in terms of the same functions to represent the geometry, which enables to provide a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling and analyze arbitrarily shaped structures without re-meshing. In this paper, a continuum-based adjoint sensitivity analysis method using the isogeometric approach is extensively derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of geometry In the isogeometric analysis, however, the geometric properties are already embedded in the B-spline basis functions and control points so that it has potential capability to overcome the aforementioned difficulties. Through some numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

Study on the Efficient Dynamic System Condensation (동적 해석의 효율적 축소기법에 관한 연구)

  • Baek, Seung-Min;Kim, Ki-Ook;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.347-352
    • /
    • 2007
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the previous study, we proposed a two-level condensation scheme (TLCS) for the construction of a reduced system. In the first step, the selection of candidate elements by energy estimation, Rayleigh quotient, through Ritz vector calculation. In the second step, the primary degrees of freedom are selected by the sequential elimination method from the degrees of freedom connected to the candidate elements in the first step. In the present study, we propose TLCS combined with iterative improved reduced system (IIRS) to increase accuracy of the higher modes in the intermediate range. Also, it is possible to control the accuracy of the eigenvalues and eigenmodes of the reduced system. Finally, numerical examples demonstrate the performance of the proposed method.

Path Loss and Delay Characteristics According to Various Antennas at 2.45GHz in Subway Tunnel Environment (지하철 터널 환경에서 다양한 안테나에 따른 2.45GHz 대역의 경로손실 및 지연 특성)

  • Kong Min-Han;Park Noh-Joon;Kang Young-Jin;Song Moon-Kyou
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.162-168
    • /
    • 2006
  • Understanding of propagation characteristics is very important for the wireless communication system design and wireless communication service construction. In this paper, propagation characteristics is measured and analyzed at 2.45Ghz frequency band under curved subway tunnel environment. We constituted channel measurement system with sliding correlation and five different kind of antennas. The purpose of five different type of antennas is to compare propagation characteristics according to beam shape of antennas. The path loss under tunnel environment is average $4.38^{\sim}14.41dB$ lower than free space and circular polarization antenna marked smallest path loss. Also, path loss is smallest when the receiver antenna located outside of tunnel in th curved section. 90% of delay components of all antennas measured within 20ns and directional antenna has more wide coherence bandwidth than omni-directional antenna. According to measured result, when we consider path loss and delay characteristics, circular polarization antenna is most suitable under tunnel environment.

Development Guidelines of Environmental planning Indicators for Environmentally friendly Urban and Architectural Planning (친환경적 도시건축계획을 위한 환경계획지표개발의 방향)

  • Chang, Dong-Min
    • KIEAE Journal
    • /
    • v.1 no.2
    • /
    • pp.5-12
    • /
    • 2001
  • Through the harmony of natural and artificial systems a city is composed of, the ecology-oriented urban planning seeks for qualitative improvements of a city on which our life is based. To enhance the ecology-oriented urban planning, the followings are suggested by a comparative analysis of Korea with Germany regarding the development process, the instruments, and the establishment of indicators for the planning. Firstly, though our national land development plan is closely connected with B-plan, it has little to do with the natural environment. Moreover, the natural environment plan of the Ministry of Environment is almost impossible to carry out in terms of urban construction work. For this reason, the instrument for dealing with the development and environment plan systems together as well as the completion of the current plan system is needed for the ecologically acceptable urban development in the long term. Secondly, in order to realize what is mentioned above in the concrete it seems to be desirable for the system and the instrument to be devised at the extent of B-plan. The regulations of the plan should have strong legal binding force and practicality as well. The element of ecology-oriented urban planning are (1) degree of independence and appropriate density, (2) conservation of natural elements such as soil, water, animals and plants etc., (3) energy saving in land use, (4) activation of B-plan and inducement of active participation of residents. Thirdly, it will be useful to develop various kinds of indicators for the environment plan provided in advance so that the ecology-oriented urban developments may be under control. It also should be taken into consideration that the indicators are supposed to be comprehensive, representative, and practical enough to make the most of at the early stage of drawing up a plan. The kinds of indicators which can be used in the ecology-oriented urban development include (1) soil, (2) water, (3) vegetation and plants, (4) animals, (5) climate, and (6) transportation.

  • PDF

Suspended Columns for Seismic Isolation in Structures (SCSI): Experimental and numerical studies

  • Shahabi, Ali Beirami;Ahari, Gholamreza Zamani;Barghian, Majid
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.17-28
    • /
    • 2020
  • In this paper, a modified and improved seismic isolation system called suspension columns for seismic isolation was investigated. An experimental study of the proposed isolation method, together with theoretical and numerical analyses, has thoroughly been conducted. In the proposed method, during the construction of the foundation, some cavities are created at the position of the columns inside the foundation and the columns are placed inside the cavities and hanged from the foundation by flexible cables rather being directly connected to the foundation. Since the columns are suspended and due to the gap between the columns and walls of the cavities, the structure is able to move freely to each side thus, the transmitted seismic actions are reduced. The main parameter of this isolation technique is the length of the suspension cable. As the cable length is changed, the natural frequency of the structure is also changed, thus, the desired frequency can be achieved by means of an appropriate cable length. As the experimental phase of the study, a steel frame structure with two floors was constructed and subjected to the acceleration of three earthquakes using a shaking table with different hanging cable lengths. The structural responses were recorded in terms of acceleration and relative displacement. The experimental results were compared to the theoretical and numerical ones, obtained from the MATLAB programming and the finite element software ABAQUS, showing a suitable agreement between them. The results confirm the effectiveness of the proposed isolation method in reducing the seismic effects on the structure.

Model-Prediction-based Collision-Avoidance Algorithm for Excavators Using the RLS Estimation of Rotational Inertia (회전관성의 순환최소자승 추정을 이용한 모델 예견 기반 굴삭기의 충돌회피 알고리즘 개발)

  • Oh, Kwang Seok;Seo, Jaho;Lee, Geun Ho
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • This paper proposes a model-prediction-based collision-avoidance algorithm for excavators for which the recursive-least-squares (RLS) estimation of the excavator's rotational inertia is used. To estimate the rotational inertia of the excavator, the RLS estimation with multiple forgetting and two updating rules for the nominal parameter and the forgetting factors was conducted based on the excavator-swing dynamics. The average value of the estimated rotational inertia that is for the minimizing effects of the estimation error was computed using the recursive-average method with forgetting. Based on the swing dynamics, the computed average of the rotational inertia, the damping coefficient for braking, and the excavator's braking angle were predicted, and the predicted braking angle was compared with the detected-object angle for a safety evaluation. The safety level defined in this study consists of the three levels safe, warning, and emergency braking. The analytical rotational-inertia-based performance evaluation of the designed estimation algorithm was conducted using a typical working scenario. The results of the safety evaluation show that the predictive safety-evaluation algorithm of the proposed model can evaluate the safety level of the excavator during its operation.

Laser-Scanner-based Stochastic and Predictive Working-Risk-Assessment Algorithm for Excavators (굴삭기를 위한 레이저 스캐너 기반 확률 및 예견 작업 위험도 평가 알고리즘 개발)

  • Oh, Kwang Seok;Park, Sung Youl;Seo, Ja Ho;Lee, Geun Ho;Yi, Kyong Su
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.14-22
    • /
    • 2016
  • This paper presents a stochastic and predictive working-risk-assessment algorithm for excavators based on a one-layer laser scanner. The one-layer laser scanner is employed to detect objects and to estimate an object's dynamic behaviors such as the position, velocity, heading angle, and heading rate. To estimate the state variables, extended and linear Kalman filters are applied in consideration of laser-scanner information as the measurements. The excavator's working area is derived based on a kinematic analysis of the excavator's working parts. With the estimated dynamic behaviors and the kinematic analysis of the excavator's working parts, an object's behavior and the excavator's working area such as the maximum, actual, and predicted areas are computed for a working risk assessment. The four working-risk levels are defined using the predicted behavior and the working area, and the intersection-area-based quantitative-risk level has been computed. An actual test-data-based performance evaluation of the designed stochastic and predictive risk-assessment algorithm is conducted using a typical working scenario. The results show that the algorithm can evaluate the working-risk levels of the excavator during its operation.

A Study on Development of STACO Model to Predict Bead Height in Tandem GMA Welding Process (탄템 GMA 용접공정의 표면비드높이 예측을 위한 STACO모델 개발에 관한 연구)

  • Lee, Jongpyo;Kim, IllSoo;Park, Minho;Park, Cheolkyun;Kang, Bongyong;Shim, Jiyeon
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.8-13
    • /
    • 2014
  • One of the main challenges of the automatic arc welding process which has been widely used in various constructions such as steel structures, bridges, autos, motorcycles, construction machinery, ships, offshore structures, pressure vessels, and pipelines is to create specific welding knowledge and techniques with high quality and productivity of the production-based industry. Commercially available automated arc welding systems use simple control techniques that focus on linear system models with a small subset of the larger set of welding parameters, thereby limiting the number of applications that can be automated. However, the correlations of welding parameters and bead geometry as welding quality have mostly been linked by a trial and error method to adjust the welding parameters. In addition, the systematic correlation between these parameters have not been identified yet. To solve such problems, a new or modified models to determine the welding parameters for tandem GMA (Gas Metal Arc) welding process is required. In this study, A new predictive model called STACO model, has been proposed. Based on the experimental results, STACO model was developed with the help of a standard statistical package program, MINITAB software and MATLAB software. Cross-comparative analysis has been applied to verify the reliability of the developed model.

Implementation of Popular Radon Detector Using Pin Photodiode (핀 포토다이오드를 이용한 보급형 라돈 검출기의 구현)

  • Yun, Sung-Ha;Kim, Jae-Hak;Kim, Gyu-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.99-106
    • /
    • 2016
  • When radon is staying at alveoli and bronchial tubes, the collapse of radon creates progeny nuclides (alpha ray, beta ray, gamma ray, etc.). They emit radiation causing a mutation in the chromosome of the cell, resulting in lung cancer. In other words, the main cause of lung cancer is radiation emitting as the result of radon collapse rather than radon gas. The 82% of radiation exposed to people is the natural radiation. Most of the natural radiation is radon. If we properly control the concentration of radon indoors, the probability of occurrence of lung cancer could be decreases to be 70%. Until now, to measure the indoor radon concentration, imported radon sensors are needed. So, DB construction of indoor radon emission and popular radon measuring apparatus should be developed. In this paper, we propose the radon detecting method using PIN photodiode. Also, we confirmed the PIN photodiode could be used as radon sensor module through some experimental studies.