• Title/Summary/Keyword: construction control

Search Result 5,207, Processing Time 0.034 seconds

Route Optimization for Energy-Efficient Path Planning in Smart Factory Autonomous Mobile Robot (스마트 팩토리 모빌리티 에너지 효율을 위한 경로 최적화에 관한 연구)

  • Dong Hui Eom;Dong Wook Cho;Seong Ju Kim;Sang Hyeon Park;Sung Ho Hwang
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2024
  • The advancement of autonomous driving technology has heightened the importance of Autonomous Mobile Robotics (AMR) within smart factories. Notably, in tasks involving the transportation of heavy objects, the consideration of weight in route optimization and path planning has become crucial. There is ongoing research on local path planning, such as Dijkstra, A*, and RRT*, focusing on minimizing travel time and distance within smart factory warehouses. Additionally, there are ongoing simultaneous studies on route optimization, including TSP algorithms for various path explorations and on minimizing energy consumption in mobile robotics operations. However, previous studies have often overlooked the weight of the objects being transported, emphasizing only minimal travel time or distance. Therefore, this research proposes route planning that accounts for the maximum payload capacity of mobile robotics and offers load-optimized path planning for multi-destination transportation. Considering the load, a genetic algorithm with the objectives of minimizing both travel time and distance, as well as energy consumption is employed. This approach is expected to enhance the efficiency of mobility within smart factories.

A Novel and Effective University Course Scheduler Using Adaptive Parallel Tabu Search and Simulated Annealing

  • Xiaorui Shao;Su Yeon Lee;Chang Soo Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.843-859
    • /
    • 2024
  • The university course scheduling problem (UCSP) aims at optimally arranging courses to corresponding rooms, faculties, students, and timeslots with constraints. Previously, the university staff solved this thorny problem by hand, which is very time-consuming and makes it easy to fall into chaos. Even some meta-heuristic algorithms are proposed to solve UCSP automatically, while most only utilize one single algorithm, so the scheduling results still need improvement. Besides, they lack an in-depth analysis of the inner algorithms. Therefore, this paper presents a novel and practical approach based on Tabu search and simulated annealing algorithms for solving USCP. Firstly, the initial solution of the UCSP instance is generated by one construction heuristic algorithm, the first fit algorithm. Secondly, we defined one union move selector to control the moves and provide diverse solutions from initial solutions, consisting of two changing move selectors. Thirdly, Tabu search and simulated annealing (SA) are combined to filter out unacceptable moves in a parallel mode. Then, the acceptable moves are selected by one adaptive decision algorithm, which is used as the next step to construct the final solving path. Benefits from the excellent design of the union move selector, parallel tabu search and SA, and adaptive decision algorithm, the proposed method could effectively solve UCSP since it fully uses Tabu and SA. We designed and tested the proposed algorithm in one real-world (PKNU-UCSP) and ten random UCSP instances. The experimental results confirmed its effectiveness. Besides, the in-depth analysis confirmed each component's effectiveness for solving UCSP.

Construction of sports hall flooring with excellent properties by nanocomposites

  • Xianfang Zhang
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.155-164
    • /
    • 2024
  • The rapid evolution of intelligent sports equipment and gadgets has led to the transformation of smartphones into personalized coaching devices. This transformative role is central in today's technologically advanced landscape, addressing the needs of individuals with contemporary lifestyles. The development of intelligent sports gadgets is geared towards elevating overall quality of life by facilitating sports activities, workouts, and promoting health preservation. This categorization yields two primary types of devices: smart sports devices for exercise and smart health control devices, which encompass functionalities such as blood pressure monitoring and muscle volume measurement. Illustrative examples include smart headbands, smart socks, smart wristbands, and smart shoe soles. Significantly, the global market for smart sports devices has garnered substantial popularity among enthusiasts. Moreover, the integration of sensors within these devices has instigated a revolution in group and professional sports, facilitating the calculation of impact intensity and ball speed. The utilization of various types of smart sports equipment has proliferated, encompassing applications in both sports' performance and health monitoring across diverse demographics. This article conducts an assessment of the application of nanotechnology in the continuous modeling of the magnetic electromechanical sensor integrated within smart shoe soles, with a specific emphasis on its implementation in soccer training. The exploration delves into the nuanced intersection of nanotechnology and sports equipment, elucidating the intricate mechanisms that underlie the transformative impact of these advancements.

Wave propagation along protein microtubule: Via strain gradient and orthotropic elastic model

  • Muhammad Taj;Mohammad Amien Khadimallah;Shahzad Ali Chattah;Ikram Ahmad;Sami Alghamdi;Muzamal Hussain;Rana Muhammad Akram Muntazir;Faisal Al-Thobiani;Muhammad Safeer;Muhammad Naeem Mohsin;Faisal Mehmood Butt;Zafer Iqbal
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.243-254
    • /
    • 2023
  • Microtubules in the cell are influenced by internal and external stimulation and play an important part in conveying protein substances and in carrying out medications to the intended targets. Waves are produced during these functions and in order to control the biological cell functions, it is important to know the wave velocities of microtubules. Owing to cylindrical shell shaped and mechanically elastic and orthotropic, cylindrical shell model based on gradient elasticity theory has been used. Wave velocities of the protein microtubule are carried out by considering Love's thin shell theory and Navier solution. Also the effect of size parameter and other variables on the results are investigated.

Prediction behavior of the concentric post-tensioned anchorage zones

  • Shangda Chen;Linyun Zhou
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.217-230
    • /
    • 2023
  • Methods for designing the post-tensioned anchorage zones at ultimate limit state has been specified in current design codes based on strut-and-tie models (STM). However, it is still not clear how to estimate the serviceability behavior of the anchorage zones. The serviceability is just indirectly taken into account by means of the reasonable reinforcement detailing. To address this issue, this paper is devoted to developing a modified strut-and-tie model (MSTM) to predict the behavior of concentric anchorage zones throughout the loading process. The principle of stationary complementary energy is introduced into STM at each load step to satisfy the compatibility condition and generate the unique MSTM. The structural behavior of anchorage zones can be achieved based on MSTM from loading to failure. Simplified formulas have been proposed to estimate the first cracking load, bearing capacity and maximum crack width with the consideration of the details of reinforcement bursting bars. The proposed model provides a definite method to control the bursting crack width in concentric anchorage zones. Four specimens with different bearing plate ratios have been designed and tested to validate the proposed method.

Human Experience Using Virtual Reality for an Optimal Architectural Design (효율적인 건축디자인을 위한 가상현실을 활용한 공간경험연구)

  • Chun, Soo Kyung;Cha, Seung Hyun
    • Journal of KIBIM
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Virtual reality is one of the key emerging technologies of the 21th century and it has been used in a variety of ways in the fields of architectural research. Virtual reality is presented as an ideal alternative for studying the interaction between space and humans because it provides a realistic spacial experience while allowing experimenters to control environmental variables at a low cost easily. It allowed us to deepen our knowledge of human spatial experience in the built environment. However, existing reviews do not include the following points: 1) previous review research has been focused on using virtual reality technology in construction and engineering, not spatial experience, 2) recently, some review researches started to study the interaction between space and humans in the built environment, however, they do not suggest specific concepts of spatial experience. The present review aims to examine the existing literature about measuring spatial experience using virtual reality in architectural design. The study conducted a systematic qualitative review that analyzes and synthesizes the evolving literature regarding design elements, methodology, and usability. The study concludes with an overall discussion and their potential for providing further directions for future research.

A study on decentralization and intellectual property rights(IP) construction strategies in NFT art: Focusing on the Chinese case (NFT 예술의 탈중앙화와 지식재산권 구축 전략에 관한 연구 : 중국 사례를 중심으로 )

  • LIN LI;Rui Zhan
    • Trans-
    • /
    • v.16
    • /
    • pp.33-68
    • /
    • 2024
  • In a rapidly growing digital economic environment, NFT has emerged as a hot topic in the art field. However, in China, NFT art is developing slowly due to constraints related to China's political economy and socio-cultural situation. Due to strict management and control, the circulation of cryptocurrency is limited, and the level of public awareness and acceptance of NFT art and market maturity are still low. Despite these limitations, this paper predicts that Chinese art creators and market participants can build an online personal art IP model that suits the characteristics of the Chinese market and explores the current status and possibilities.

System Construction and Data Development of National Standard Reference for Renewable Energy - Model-Based Standard Meteorological Year (신재생에너지 국가참조표준 시스템 구축 및 개발 - 모델 기반 표준기상년)

  • Boyoung Kim;Chang Ki Kim;Chang-yeol Yun;Hyun-goo Kim;Yong-heack Kang
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.95-101
    • /
    • 2024
  • Since 1990, the Renewable Big Data Research Lab at the Korea Institute of Energy Technology has been observing solar radiation at 16 sites across South Korea. Serving as the National Reference Standard Data Center for Renewable Energy since 2012, it produces essential data for the sector. By 2020, it standardized meteorological year data from 22 sites. Despite user demand for data from approximately 260 sites, equivalent to South Korea's municipalities, this need exceeds the capability of measurement-based data. In response, our team developed a method to derive solar radiation data from satellite images, covering South Korea in 400,000 grids of 500 m × 500 m each. Utilizing satellite-derived data and ERA5-Land reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), we produced standard meteorological year data for 1,000 sites. Our research also focused on data measurement traceability and uncertainty estimation, ensuring the reliability of our model data and the traceability of existing measurement-based data.

Key-point detection of fruit for automatic harvesting of oriental melon (참외 자동 수확을 위한 과일 주요 지점 검출)

  • Seung-Woo Kang;Jung-Hoon Yun;Yong-Sik Jeong;Kyung-Chul Kim;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • In this study, we suggested a key-point detection method for robot harvesting of oriental melon. Our suggested method could be used to detect the detachment part and major composition of oriental melon. We defined four points (harvesting point, calyx, center, bottom) based on tomato with characteristics similar to those of oriental melon. The evaluation of estimated key-points was conducted by pixel error and PDK (percentage of detected key-point) index. Results showed that the average pixel error was 18.26 ± 16.62 for the x coordinate and 17.74 ± 18.07 for the y coordinate. Considering the resolution of raw images, these pixel errors were not expected to have a serious impact. The PDK score was found to be 89.5% PDK@0.5 on average. It was possible to estimate oriental melon specific key-point. As a result of this research, we believe that the proposed method can contribute to the application of harvesting robot system.

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2024
  • This paper investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, this thesis analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. This thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.