• Title/Summary/Keyword: construction control

Search Result 5,207, Processing Time 0.031 seconds

Review of Regulation for Rollover Test and Evaluation of Safety for Buses by using Simulation of Multi-body Dynamics (다물체 동역학 시뮬레이션을 통한 버스의 전복 시험 규정과 안전성 평가에 관한 고찰)

  • Park, Seung Woon;Choi, Yo Han;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.39-46
    • /
    • 2022
  • In South Korea, to evaluate the rollover safety of domestic vehicles, the maximum slope angle of the vehicle is specified, which is verified by the rollover safety test of driving vehicles. However, the domestic rollover safety test is not suitable for buses, because the small amount of static stability factor (SSF) will invalidate the rollover experimental equation due to the high center of mass position of buses. To solve the above problems, a dynamic model of the bus is prepared with assumptions of mass and suspension spring properties. Subsequently, the maximum slope angle of the model was computed by using the simulation of multi-body dynamics, and the result was compared with actual test results to validate the dynamics model. Also, the rollover Fishhook (roll stability) test was conducted in the simulation for driving model. During the simulation, roll angle and roll rate were calculated to check if a rollover occurred. Through the rollover simulation of buses, the domestically regulated formula for rollover safety and the procedure of rollover test for driving vehicles are evaluated. The conclusion is that the present regulation of rollover test should be reconsidered for buses to ensure to get the valid results for rollover safety.

Analysis of Surplus Flow in a Hydraulic System Applied to a Self-propelled Spinach Harvester (자주식 시금치 수확장치에 적용된 유압시스템의 잉여유량 분석)

  • Noh, Dae Kyung;Lee, Dong Won;Lee, Jong Su;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.26-33
    • /
    • 2022
  • This study dealt with a self-propelled spinach harvester, which is capable of carrying out sequential harvesting work. This study aimed to find the cause of the harvester's occasional performance deterioration, which occurs in the process of simplifying the hydraulic circuit, using a multi-domain analysis model. The study was carried out in the following manner. First, a hydraulic system analysis model, which combines linear motion, rotary motion, hydrodynamic behavior, and an electrical signal, was developed through SimulationX software, specialized in multi-domain analysis. Second, a scenario for single behavior and coupled behavior was set out on an actuator basis. Third, the flow rate of the hydraulic system, which is not required for the movement of the actuator, was quantitatively analyzed. The results showed that a change in oil temperature was the cause of the harvester's occasional performance deterioration. And the higher the oil temperature, the more serious the performance deterioration, especially as the number of actuators operated simultaneously was small.

FG-based computational fracture of frequency up-conversion for bistablity of rotating shell: An effective numerical scheme

  • Hussain, Muzamal
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.367-376
    • /
    • 2022
  • Theoretical study of vibration distinctiveness of rotating cylindrical are examined for three volume fraction laws viz.: polynomial, exponential and trigonometric. These laws control functionally graded material composition in the shell radius direction. Functionally graded materials are controlled from two or more materials. In practice functionally graded material comprised of two constituent materials is used to form a cylindrical shell. For the current shell problem stainless steel and nickel are used for the shell structure. A functionally graded cylindrical shell is sanctioned into two types by interchanging order of constituent materials from inner and outer side for Type I and Type II cylindrical shell arrangement. Fabric composition of a functionally graded material in a shell thickness direction is controlled by volume fraction law. Variation of power law exponent brings change in frequency values. Influence of this physical change is investigated to evade future complications. This procedure is capable to cater any boundary condition by changing the axial wave number. But for simplicity, numerical results have been evaluated for clamped- simply supported rotating cylindrical shells. It has been observed from these results that shell frequency is bifurcated into two parts: one is related to the backward wave and other with forward wave. It is concluded that the value of backward frequency is some bit higher than that forward frequency. Influence of volume fraction laws have been examined on shell frequencies. Backward and forward frequency curves for a volume fraction law are upper than those related to two other volume fraction laws. The results generated furnish the evidence regarding applicability of present shell model and also verified by earlier published literature.

Vibration behaviour of cold-formed steel and particleboard composite flooring systems

  • AL Hunaity, Suleiman A.;Far, Harry;Saleh, Ali
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.403-417
    • /
    • 2022
  • Recently, there has been an increasing demand for buildings that allow rapid assembly of construction elements, have ample open space areas and are flexible in their final intended use. Accordingly, researchers have developed new competitive structures in terms of cost and efficiency, such as cold-formed steel and timber composite floors, to satisfy these requirements. Cold-formed steel and timber composite floors are light floors with relatively high stiffness, which allow for longer spans. As a result, they inherently have lower fundamental natural frequency and lower damping. Therefore, they are likely to undergo unwanted vibrations under the action of human activities such as walking. It is also quite expensive and complex to implement vibration control measures on problematic floors. In this study, a finite element model of a composite floor reported in the literature was developed and validated against four-point bending test results. The validated FE model was then utilised to examine the vibration behaviour of the investigated composite floor. Predictions obtained from the numerical model were compared against predictions from analytical formulas reported in the literature. Finally, the influence of various parameters on the vibration behaviour of the composite floor was studied and discussed.

Structural performance of fiber reinforced cementitious plinths in precast girder bridges

  • Gergess, Antoine N;Challita, Julie
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.313-323
    • /
    • 2022
  • Steel laminated elastomeric bearings are commonly used in bridge structures to control displacements and rotations and transfer forces from the superstructure to the substructure. Proper knowledge of design, fabrication and erection procedures is important to ensure stability and adequate structural performance during the lifetime of the bridge. Difference in elevations sometimes leads to large size gaps between the bearing and the girder which makes the grout thickness that is commonly used for leveling deviate beyond standards. This paper investigates the structural response of High Strength Fiber Reinforced Cementitious (HSFRC) thin plinths that are used to close gaps between bearing pads and precast girders. An experimental program was developed for this purpose where HSFRC plinths of different size were cast and tested under vertical loads that simulate bridge loading in service. The structural performance of the plinths was closely monitored during testing, mainly crack propagation, vertical reaction and displacement. Analytically, the HSFRC plinth was analyzed using the beam on elastic foundation theory as the supporting elastomeric bearing pads are highly compressible. Closed form solutions were derived for induced displacement and forces and comparisons were made between analytical and experimental results. Finally, recommendations were made to facilitate the practical use of HSFRC plinths in bridge construction based on its enhanced load carrying capacity in shear and flexure.

Fabrication of a Breathing Assist Device for Saxophone Players with Breathing Problems

  • Kato, Tomonori;Ashikari, Tadataka;Matoba, Chikara;Mawatari, Asashi;Thumwarin, Pitak
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.72-76
    • /
    • 2021
  • The aim of this study was to establish a breathing assist system for saxophone players with breathing problems. Although the saxophone is a popular wind instrument with a reed in its mouthpiece, it can be difficult for people with breathing problems to play this instrument, as it requires adequate breath support for deep and even long breaths. To solve this problem, the authors propose a breathing assist device, which functions like a pneumatic master-slave amplifier, for saxophone players with breathing problems. First, the proposed device is fabricated. Second, the effectiveness of the breathing assist device as a master-slave amplifier is confirmed through experiments. Third, the dynamic characteristics of the device are tested up to 10 Hz, and they demonstrate that the device responds well for up to approximately 5 Hz.

Thermal Flow Analysis of an Engine Room using a Porous Media Model for Imitating Flow Rate Reduction at Outlet of Industrial Machines (다공성 매질 모델 기반 출구유량 감소 모사 기법을 이용한 산업기계용 엔진룸 열유동해석)

  • Choi, Yo Han;Yoo, Il Hoon;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.62-68
    • /
    • 2022
  • Considering the characteristics of industrial machines that lack vehicle-induced wind, forced convection by a cooling fan is mostly required. Therefore, numerical analysis of an engine room is usually performed to examine the cooling performance in the room. However, most engine rooms consist of a number of parts and components at specific positions, leading to high costs for numerical modeling and simulation. In this paper, a new methodology for three-dimensional computer-assisted design simplification was proposed, especially for the pile of components and parts at the engine room outlet. A porous media model and regression analysis were used to derive a meta-model for imitating the flow rate reduction at the outlet by the pile. The results showed that the fitted model was reasonable considering the coefficient of determination. The final numerical model of the engine room was then used to simulate the velocity distribution by changing the mass flow rate at the outlet. The results showed that both velocity distributions were significantly changed in each case and the meta-model was valid in imitating the flow rate reduction by some piles of components and parts.

The Impact of CSR Strategy of Affiliated Firm on Performance in the Emerging Markets: Resource-Based and Institutional Approaches

  • Cho, Youngsam
    • Journal of East Asia Management
    • /
    • v.3 no.2
    • /
    • pp.1-19
    • /
    • 2022
  • This study suggests an integrated theoretical framework for the relationship between political risk and multinational corporation (MNC) subsidiary's performance in the emerging market. The political risk would have a negative impact on MNC subsidiary's performance in the emerging countries that are developing in Asia, the Commonwealth of Independent States, Africa, and South America. The major reason is that political risks could generate a loss of benefit or a loss of control for MNC's subsidiary. In this study, I suggest that corporate social responsibility (CSR) strategy would be a solution to overcome various political risks. Specifically, the affiliated firms with diversified industries or greater financial resources could mitigate the negative impact of political risk than unaffiliated firms. Because they can use their tangible or nontangible asset such as information, technology, and construction in order to gain legitimacy and trust from local government, local community, and local firms in the emerging market. Finally, I claimed the costs of the affiliated firms would exceed the benefits at the initial stages, while the benefits of affiliated firms would exceed the costs over time when political risks become higher. The reason is that the trust gained from local stakeholders accumulates over time and the impact of CSR strategy would become an important solution to overcome the risks in and unstable context.

Measurement Uncertainty calculation for improving test reliability of Agricultural tractor ROPS Test (농업용트랙터 ROPS 시험의 신뢰성 향상을 위한 측정불확도 추정)

  • Ryu Gap Lim;Young Sun Kang;Taek Jin Kim
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.34-40
    • /
    • 2023
  • The agricultural tractor ROPS test method according to OECD code 4 is a test to assess whether the driver's safety area can be secured when a tractor overturns, and reliability should be ensured. In this study, a model formula and procedure for calculating measurement uncertainty expressing reliability in the field of agricultural machinery testing were established according to the ISO/IEC Guide 98-3:2008. The characteristics of the ROPS test device were assessed and repeated tests were performed, and the were used as factors to calculate the measurement uncertainty. As a result of repeated tests, the accuracy was higher than 1.9 % in all load directions; thus, they were, applied to calculate the type A standard uncertainty. The final expanded uncertainty was calculated within the range of less than ± 7.76 kN of force and ± 6.96 mm of deformation in all load directions.

Simulation Study on the Safety of a Fastening Device of Agricultural By-product Collector (동역학 시뮬레이션을 통한 농업부산물 수집기 체결장치의 안전성 분석)

  • Jeong-Hun Kim;Seok-Joon Hwang;Ju-Seok Nam
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.42-49
    • /
    • 2023
  • In this study, the safety of fastening device for the agricultural by-product collector was evaluated according to the driving ground conditions by deriving the stress, static safety factor, and fatigue life using dynamic simulation. A 3D modeling of agricultural by-product collector was carried out, and simulation model was developed by applying the material properties. As a result of dynamic simulation, the magnitude of the maximum stress generated in the fastening device was the highest when driving on the flat off-road, followed by sloped pave-road and flat pave-road. Static safety factor and fatigue life were the highest when driving on the flat pave-road, followed by sloped pave-road and flat off-road. The safety of fastening device was confirmed that static safety factor was more than 1.0 and service life exceeded 9 years in all driving ground conditions.