• Title/Summary/Keyword: construction control

Search Result 5,207, Processing Time 0.03 seconds

Insulation Effect of Double Layered Bubble Sheet Application in Cold Weather Concrete and Initial Quality Control by Wireless Sensor Network (한중시공에서 2중 버블시트 포설에 따른 단열 효과분석 및 무선센서 네트워크에 의한 초기 품질관리)

  • Han, Min-Cheol;Seo, Hang-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.21-29
    • /
    • 2021
  • The objective of this study is to evaluate the effect of the application of double layered bubble sheet on the curing of slab and wall concrete placed at the job site in cold weather and to offer a feasibility of Concrete IoT Management System(CIMS), which is wireless sensor network developed by the authors, to manage early age quality of the concrete in terms of temperature, maturity and strength development. Test results indicated that the application of bubble sheet enhances the insulation performance, which results in an increase of the temperature by around 1~20. 6℃. It is found that CIMS can gather the temperature, maturity and strength development data from the sensors embedded from 30 m far from CIMS successfully. Predicted compressive strengths by CIMS had good agreement with measured ones within 2 MPa error level until 7 days. It is thought that the combination of the bubble sheet application for cold weather protection and CIMS for quality management tool in cold weather concreting contributes to shorten the time for the form removal by one day.

A Study on Position Matching Technique for 3D Building Model using Existing Spatial Data - Focusing on ICP Algorithm Implementation - (기구축 공간데이터를 활용한 3차원 건물모델의 위치정합 기법 연구 - ICP 알고리즘 구현 중심으로 -)

  • Lee, Jaehee;Lee, Insu;Kang, Jihun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.67-77
    • /
    • 2021
  • Spatial data is becoming very important as a medium that connects various data produced in smart cities, digital twins, autonomous driving, smart construction, and other applications. In addition, the rapid construction and update of spatial information is becoming a hot topic to satisfy the diverse needs of consumers in this field. This study developed a software prototype that can match the position of an image-based 3D building model produced without Ground Control Points using existing spatial data. As a result of applying this software to the test area, the 3D building model produced based on the image and the existing spatial data show a high positional matching rate, so that it can be widely used in applications requiring the latest 3D spatial data.

Methane Engine Combustion Test Facility Construction and Preliminary Tests (메탄엔진 연소시험설비 구축 및 예비 시험들)

  • Kang, Cheolwoong;Hwang, Donghyun;Ahn, Jonghyeon;Lee, Junseo;Lee, Dain;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.89-100
    • /
    • 2021
  • This paper deals with the construction of a combustion test facility and preliminary tests for hot-firing tests of a methane engine. First, the combustion test facility for a 1 kN-class thrust chamber using liquid oxygen/gas methane as propellants was designed and built. Before hot-firing tests, the cold-flow tests of each propellant line and the ignition tests of torch igniter/afterburner were performed to verify propellant supply stability of the combustion test facility, operation of the control and measurement system, and successful ignition. Finally, a preliminary hot-firing test was conducted to measure the combustion efficiency, heat flux, and combustion stability of a thrust chamber prototype. The constructed combustion test facility will be helpfully used for basic research and development of methane engine thrust chambers.

Development of a Sustainable Waste Paint Treatment Process for Waste Resource Recovery Improvement (폐기물 자원회수 향상을 위한 친환경 폐페인트 처리프로세스 개발)

  • Moon, Jongwook;Hwang, Suckho;Kim, Daeyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.73-82
    • /
    • 2022
  • Waste paint, one of the specified wastes in Korea, is currently treated entirely by incineration treatment method, and is hardly recycled compared to other wastes. Incineration treatment method also causes environmental problems such as air pollution. Thus, this study breaks away from the existing incineration treatment method of waste paint and switch to a method of pretreatment operation through evaporation, condensation, and thermal decomposition by temperature control. and then proposes a sustainable waste paint treatment process that can be recycled as an alternative energy heat source. If a new method of disposing of waste paint and technology for recycling are developed and disseminated, it is expected that the effect will be large from an economic and environmental point of view.

The Relationship between Hospital Selection by Employer and Disabilities in Occupational Accidents in Korea

  • Ahn, Joonho;Jang, Min;Yoo, Hyoungseob;Kim, Hyoung-Ryoul
    • Safety and Health at Work
    • /
    • v.13 no.3
    • /
    • pp.279-285
    • /
    • 2022
  • Background; In the event of an industrial accident, the appropriate choice of hospital is important for worker health and prognosis. This study investigates whether the choice of hospital by the employer in the case of industrial accidents affects the prognosis of injured employees. Methods; Data from the 2018 Panel Study of Workers' Compensation Insurance in Korea were used in an unmatched case-controlled study. The exposure variable is "hospital selection by an employer," and the outcome variable is 'worker's disability." Odds ratios (ORs) were estimated by modified Poisson regression and adjusted for age, gender, underlying disease, injury severity, and workplace size and stratified by industrial classification. The group at increased risk was analyzed and stratified by age, gender, and area. Results; In the construction industry, hospital selection by the employer was significantly associated with increased risk of disability (adjusted OR 1.26; 95% confidence interval [CI]; 1.20-1.32) and severe disability (adjusted OR 1.38; 95% CI; 1.08-1.76) among the injured. Female and younger workers not living in the Seoul capital area were more at risk of disability and severe disability than those living in the Seoul capital area. Conclusions; Hospital selection by employers affects the prognosis of workers injured in an industrial accident. For protecting workers' health and safety, workplace emergency medical systems should be improved, and the selection of appropriate hospitals to supply treatment should be reviewed.

Effect on Ferronickel Slag Powder in ASR (페로니켈 슬래그 미분말이 ASR에 미치는 영향)

  • Kim, Min-Seok;Seo, Woo-Ram;Rhee, Suk-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • Most of the existing research on ferronickel slag has focused on its potential as aggregate and fine aggregate, this study was conducted focusing on the potential of ferronickel slag powder as a concrete admixture. For concrete, which fly ash, blast furnace slag, and FSP were mixed with each 10 % type the reactivity was evaluated by applying ASTM C 1260 of the United States. As a result, compared with the control group, the expansion rate of fly ash decreased by 8.43 % and that of fine blast furnace slag powder decreased by 14.46 %, while the expansion rate of ferronickel slag decreased by 49.40 %. it was confirmed that ferronickel slag can sufficiently be replaced existing supplementary cementitious admixtures such as fly ash and blast furnace slag in terms of suppressing the reactivity of aggregates. However as a result of SEM analysis, ettringites were generated, and additional research about how it affects concrete is needed.

Evaluation on the Mechanical Performance and Microstructure of Cement Pastes Using Carbon Nanotube (탄소나노튜브 적용 시멘트 페이스트의 역학적 성능 및 미세구조 평가)

  • Chae-Ik, Lim;Se-Ho, Park;Won-Woo, Kim;Jae-Heum, Moon;Seung-Tae, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.489-497
    • /
    • 2022
  • In this study, the fluidity, mechanical properties and microstructure of cement pastes with carbon nanotube (CNT) were experimentally investigated. The 6 types of cement paste mixes with different PCE:CNT and w/b had been manufactured, and several tests including flow, compressive strength, absorption and water porosity were performed on cement pastes with or without CNT.Additionally, microstructural observations such as x-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out to examine hydrates formed in cement paste with CNT. As a result, it was found that the performance of cement pastes with CNT was better compared to that of control cement paste (OPC) due to both of hydration acceleration effect and filling effect. Furthermore, the SEM images clearly showed that CNT can bridge cracks formed in cement matrix. Conclusively, it is believed that the CNT, if mixed appropriately, could be an option as nono-materials to improve performance of concrete structures.

Mechanical and durability of geopolymer concrete containing fibers and recycled aggregate

  • Abdelaziz Yousuf, Mohamed;Orhan, Canpolat;Mukhallad M., Al-Mashhadani
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.421-432
    • /
    • 2022
  • Recently, the interminable ozone depletion and the global warming concerns has led to construction industries to seek for construction materials which are eco-friendly. Regarding this, Geopolymer Concrete (GPC) is getting great interest from researchers and scientists, since it can operate by-product waste to replace cement which can lead to the reduction of greenhouse gas emission through its production. Also, compared to ordinary concrete, geopolymer concrete belongs improved mechanical and durability properties. In spite of its positive properties, the practical use of geopolymer concrete is currently limited. This is primarily owing to the scarce structural, design and application knowledge. This study investigates the Mechanical and Durability of Geopolymer Concrete Containing Fibers and Recycled Aggregate. Mixtures of elastoplastic fiber reinforced geopolymer concrete with partial replacement of recycled coarse aggregate in different proportions of 10, 20, 30, and 40% with natural aggregate were fabricated. On the other hand, geopolymer concrete of 100% natural aggregate was prepared as a control specimen. To consider both strength and durability properties and to evaluate the combined effect of recycled coarse aggregate and elastoplastic fiber, an elastoplastic fiber with the ratio of 0.4% and 0.8% were incorporated. The highest compressive strength achieved was 35 MPa when the incorporation of recycled aggregates was 10% with the inclusion of 0.4% elastoplastic fiber. From the result, it was noticed that incorporation of 10% recycled aggregate with 0.8% of the elastoplastic fiber is the perfect combination that can give a GPC having enhanced tensile strength. When specimens exposed to freezing-thawing condition, the physical appearance, compressive strength, weight loss, and ultrasonic pulse velocity of the samples was investigated. In general, all specimens tested performed resistance to freezing thawing. the obtained results indicated that combination of recycled aggregate and elastoplastic fiber up to some extent could be achieved a geopolymer concrete that can replace conventional concrete.

Statistical Analysis on the Structure and Performance of the Front Door in Apartment Housing (공동주택 세대 현관 방화문 구조 및 성능에 관한 통계적 분석)

  • Shim, Han-Young;Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.115-123
    • /
    • 2022
  • Statistics on the occurrence of fires in residential facilities over the past 10 years, show that approximately 40% are fires in apartment buildings. To prevent the spread of fire and support evacuation in apartment housing, the fire resistance performance and performance design of fire doors are becoming more important. This study established a database using 395 quality inspection reports from 2016 to 2020, which passed the fire performance test, and derived the fire door performance-influencing factors through an analysis of the structure (12 elements) of the fire door. As a result, the effect of core material, adhesive, hinge type, blowing agent, etc. was confirmed in 287 pass cases. On the other hand, it was confirmed that the occurrence of flames and crevices in the 108 cases of failure were the major failure factors in the fire door fire resistance test. Fire doors are composed of composite materials to prevent failure of fire resistance performance, and efficient design and quality control are required through standardization of components.

Prediction Equation of Setting Time for Mortar Using Super Retarding Agent Using Equivalent Age (등가재령을 이용한 초지연 모르타르의 응결시간 예측식 제안)

  • Han, Min-Cheol;Hyun, Seung-Yong;Kim, Jong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.80-91
    • /
    • 2022
  • This study is to provide an prediction model of setting time of super retarding mortar based on equivalent age method under various super retarding agent contents, curing temperature, and water-binder ratio (W/B). An equation for predicting setting time using maturity was proposed. Test results indicated that the setting time can be predicted by determining the curing temperature, W/B, and super retarding agent contents and substituting it into the equation proposed in this study. The coefficient of determination of the equation is 0.9 or more, and the reliability was confirmed through the F-test. Finally, using the equation proposed in this paper, reasonable quality control is possible regarding the setting of super retarding concrete in practice.