• Title/Summary/Keyword: construction control

Search Result 5,207, Processing Time 0.031 seconds

Development of SATEEC R Module using Daily Rainfall Data (일강우를 고려한 SATEEC R모듈 개발)

  • Jang, Chun-Hwa;Ryu, Ji-Chul;Kang, Hyun-Woo;Kum, Dong-Hyuk;Kim, Young-Sug;Park, Hwa-Yong;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.983-990
    • /
    • 2011
  • Universal Soil Loss Equation (USLE) has been used to estimate potential long-term soil erosion in the fields. However, the USLE does not estimate sediment yield due to lack of module considering sediment delivery ratio (SDR) for watershed application. For that reason, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) system was developed and applied to compute the sediment yield at watershed scale. However, the R factor of current SATEEC Ver. 2.1 was estimated based on 5-day antecedent rainfall, it is not related with fundamental concept of R factor. To compute R factor accurately, the energy of rainfall strikes should be considered. In this study, the R module in the SATEEC system was enhanced using formulas of Williams, Foster, Cooley, CREAMS which could consider the energy of rainfall strikes. The enhanced SATEEC system ver. 2.2 was applied to the Imha watershed and monthly sediment yield was estimated. As a result of this study, the $R^2$ and NSE values are 0.591 and 0.573 for calibration period, and 0.927 and 0.911 for validation period, respectively. The results demonstrate the enhanced SATEEC System estimates the sediment yield suitably, and it could be used to establish the detailed environmental policy standard using USLE input dataset at watershed scale.

The Quality Properties According to the Ratio of Magnesia and Potassium Phosphate of Magnesia Composites for Living Concrete Panel (리빙 콘크리트 패널용 마그네시아 복합체의 마그네시아 및 인산칼륨 비율에 따른 기초 품질 특성)

  • Choi, Yun-Wang;Nam, Eun-Joon;Kim, Cheol-Gyu;Yang, Neung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.617-624
    • /
    • 2021
  • In this study, the quality properties according to the ratio of magnesia and potassium phosphate of the magnesia composite were evaluated to control the quality of the parent material in terms of materials when designing living concrete panels. The quality properties are 7 levels (30, 35, 40, 45, 50, 55 and 60%) for W/B, 4 levels for P:M (1:0.5, 1:1.0, 1:2.0 and 1:3.0 vol. %) was prepared and evaluated. As a result of evaluating the flow of the magnesia complex, as W/B increased, the flow showed a tendency to increase, and the flow showed a tendency to decrease as the P:M increased. As a result of the evaluation of the compressive strength of the magnesia composite, the strength showed a tendency to decrease as P:M increased. In addition, it was confirmed that an optimal P:M ratio exists.

Investigation to Metal 3D Printing Additive Manufacturing (AM) Process Simulation Technology (II) (금속 3D 프린팅 적층제조(AM) 공정 시뮬레이션 기술에 관한 고찰(II))

  • Kim, Yong Seok;Choi, Seong Woong;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.51-58
    • /
    • 2019
  • The objective of this study was to investigate a simulation technology for the AM field based on ANSYS Inc.. The introduction of metal 3D printing AM process, and the examining of the present status of AM process simulation software, and the AM process simulation processor were done in the previous study (part 1). This present study (part 2) examined the use of the AM process simulation processor, presented in Part 1, through direct execution of Topology Optimization, Ansys Workbench, Additive Print and Additive Science. Topology Optimization can optimize additive geometry to reduce mass while maintaining strength for AM products. This can reduce the amount of material required for additive and significantly reduce additive build time. Ansys Workbench and Additive Print simulate the build process in the AM process and optimize various process variables (printing parameters and supporter composition), which will enable the AM to predict the problems that may occur during the build process, and can also be used to predict and correct deformations in geometry. Additive Science can simulate the material to find the material characteristic before the AM process simulation or build-up. This can be done by combining specimen preparation, measurement, and simulation for material measurements to find the exact material characteristics. This study will enable the understanding of the general process of AM simulation more easily. Furthermore, it will be of great help to a reader who wants to experience and appreciate AM simulation for the first time.

An Experimental Study on the Ion Reaction and the Electrochemical Rebar-Corrosion in Aqueous Solution Mixed with Sulfate and Chloride Ion-Reactive Material (황산, 염소이온 반응 소재 혼입 수용액에서의 이온반응성 및 전기화학적 철근 부식에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kang, Tae-Won;Lim, Chang-Gil;Kim, Hong-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • In this study, amine derivatives and ion exchange resins were selected to actively control penetration ions ($SO{_4}^{2-}$, $Cl^-$) as the element technology of repair materials for concrete structures in drainage environments. Ions ($SO{_4}^{2-}$, $Cl^-$) adsorption performance and corrosion resistance of calcium hydroxide solution with amine derivative and ion exchange resin were confirmed by ion chromatography and potentiostat analysis. As a result of the experiment, it was confirmed that the amine derivative is excellent in the adsorption of chlorine ion and the ion exchange resin is excellent in the adsorption of sulfate ion. It has been confirmed that corrosion resistance can be increased by proper combination of two materials in the calcium hydroxide solution containing sulfate ion and chloride ion simulating sewage environment.

A Preliminary Study on the Development of Data Model for Interoperability of Information in Building Disaster Prevention (건물 방재 분야 정보의 상호운용성을 위한 데이터모델 개발에 관한 기초연구)

  • Hwang, ByungJu;Kim, Jang-Wook;Kim, TaeHoon
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.4
    • /
    • pp.30-40
    • /
    • 2019
  • As the urban scale changes and the construction technology develops, the living space is being expanded in three dimensions. However, despite the development of construction technology represented by the appearance of skyscrapers, damage to high - rise buildings with dense population can be rather high. In order to solve such a situation, digital twin technology that can control and predict the real world in real time can be an alternative, and it is necessary to utilize pre-constructed spatial information actively. Therefore, this study aims to provide a standardized data model for using existing such information as well as various information produced in the future to the building disaster prevention field. To this end, we developed a data model that extends the CityGML standard, a representative city information model, to disaster prevention.

A Stress Transfer Length of Pre-tensioned Members Using Ultra High Performance Concrete (초고성능 콘크리트 프리텐션부재의 응력전달길이)

  • Kim, Jee-Sang;Choi, Dong-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.336-341
    • /
    • 2018
  • The prestressing force introduced to the tendon in pretensioned concrete members is transferred by direct bond between tendon and concrete, which requires a proper estimation of stress transfer length. The use of pretensiond and/or precast members with UHPC (Ultra High Performance Concrete) may give many advantages in quality control. This paper presents an experiment to estimate the stress transfer length of UHPC for various compressive strength levels of UHPC, cover depths, diameters of tendons and tensioning forces. According to the result of this experiment, the stress transfer length of UHPC member is much reduced comparing that of normal strength concrete. The reduction in stress transfer length of UHPC may come from the high bond strength capacity of UHPC. The transfer lengths obtained from this experiment are compared to those in current design code and a new formula is proposed.

Effect of Curing Condition on the Chloride ion Diffusion Coefficient in Concrete with GGBFS (양생조건이 고로슬래그 미분말을 혼입한 시멘트 콘크리트의 염화물이온 확산계수에 미치는 영향)

  • Park, Jang-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.421-429
    • /
    • 2019
  • The changes in the resistance to chloride ingress of concrete using a ground granulated blast furnace slag (GGBFS) according to curing conditions were examined. The curing conditions were divided in air-dry curing and under-water curing. Three concrete mixures with the GGBFS replacement ratio of 0%(control), 30%, and 60% were prepared. For tests, evaluations of concrete compressive strength, and chloride ion diffusion coefficient were performed. As the GGBFS replacement ratio increased, the concrete compressive strength of the in air-dry cured specimens decreased compared to under-water cured specimens. When the chloride ion diffusion coefficient was measured, the chloride ion diffusion coefficient decreased as the GGBFS replacement ratio increased. However, the diffusion coefficient of the in air-dry cured specimen was increased up to 111% compared with the under-water cured specimen.

Geotechnical engineering behavior of biopolymer-treated soft marine soil

  • Kwon, Yeong-Man;Chang, Ilhan;Lee, Minhyeong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.453-464
    • /
    • 2019
  • Soft marine soil has high fine-grained soil content and in-situ water content. Thus, it has low shear strength and bearing capacity and is susceptible to a large settlement, which leads to difficulties with coastal infrastructure construction. Therefore, strength improvement and settlement control are essential considerations for construction on soft marine soil deposits. Biopolymers show their potential for improving soil stability, which can reduce the environmental drawbacks of conventional soil treatment. This study used two biopolymers, an anionic xanthan gum biopolymer and a cationic ${\varepsilon}-polylysine$ biopolymer, as representatives to enhance the geotechnical engineering properties of soft marine soil. Effects of the biopolymers on marine soil were analyzed through a series of experiments considering the Atterberg limits, shear strength at a constant water content, compressive strength in a dry condition, laboratory consolidation, and sedimentation. Xanthan gum treatment affects the Atterberg limits, shear strength, and compressive strength by interparticle bonding and the formation of a viscous hydrogel. However, xanthan gum delays the consolidation procedure and increases the compressibility of soils. While ${\varepsilon}-polylysine$ treatment does not affect compressive strength, it shows potential for coagulating soil particles in a suspension state. ${\varepsilon}-Polylysine$ forms bridges between soil particles, showing an increase in settling velocity and final sediment density. The results of this study show various potential applications of biopolymers. Xanthan gum biopolymer was identified as a soil strengthening material, while ${\varepsilon}-polylysine$ biopolymer can be applied as a soil-coagulating material.

Development of A Model for Diagnosing Management Capabilities of Public Facility (공공시설물관리 역량 진단 모델 개발)

  • Sung, Yookyung;Yoo, Wi Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.555-566
    • /
    • 2020
  • Recently, the aging of public facilities in Korea have accelerated, and the existing framework for facility management is shifting toward to facility asset management in terms of performance-based proactive control. Therefore, the operation of public facility involves both safety assurance from the deteriorated facilities and management capabilities for sustainable maintenance in the required valuation and level of service, such as valuation of facility assets, life-cycle management plans, financing, and so on. In this study, the Facility Asset Management Indicator(FAMI) has been developed for public facility asset management, and it provides the quantitative management grade, based on international standards, such as ISO 55000 series and International Infrastructure Management Manual(IIMM). The FMMI includes 10 key areas to apply a diagnosis model into management capabilities, 113 detailed elements, and 5 maturity grades. As the importance of public facility asset management is increasing constantly, this is expected to identify previously the strengths and weaknesses of public facility operating institutions. Eventually, they can obtain the effective ways to improve their own capabilities, minimize the public funds, establish the strategies for innovating the current management structures, and operate stably the facilities in the required performance.

Effects of Ground Strength Increase using Polysaccharide Environmentally Friendly Soil Stabilizer (다당류 친환경 지반개량재를 이용한 지반강도 증대 효과)

  • Kim, Suntae;Do, Jongnam;Jo, Hyunsoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.13-21
    • /
    • 2011
  • To recover basic functions of river such as water control, irrigation, environment, culture, a national river improvement project, the four river restoration projects were currently planned and under construction in Korea. This project is designed to preserve cultural assets and ecosystem from flooding, for that reason, environmentally friendly materials of construction are strongly emphasized. In this study, the soil and cement admixtures are developed. And, the compaction test and the unconfined compressive strength test to evaluate applicability of probiotics as environmentally friendly materials are conducted the soil and cement admixtures. As a result, the probiotic culture was not active in completely dried specimen to obtain accurate mixing proportion. It indicates that the probiotics cannot influence on the development the soil and cement admixtures. A further research will focus on the effect of response between polysaccharide environmentally friendly soil stabilizer and natural specimen.