• Title/Summary/Keyword: constraint mechanism

Search Result 158, Processing Time 0.019 seconds

Robust Cooperative Relay Beamforming Design for Security

  • Gong, Xiangwu;Dong, Feihong;Li, Hongjun;Shao, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4483-4501
    • /
    • 2015
  • In this paper, we investigate a security transmission scheme at the physical layer for cooperative wireless relay networks in the presence of a passive eavesdropper. While the security scheme has been previously investigated with perfect channel state information(CSI) in the presence of a passive eavesdropper, this paper focuses on researching the robust cooperative relay beamforming mechanism for wireless relay networks which makes use of artificial noise (AN) to confuse the eavesdropper and increase its uncertainty about the source message. The transmit power used for AN is maximized to degrade the signal-to-interference-plus-noise-ratio (SINR) level at the eavesdropper, while satisfying the individual power constraint of each relay node and worst-case SINR constraint at the desired receiver under a bounded spherical region for the norm of the CSI error vector from the relays to the destination. Cooperative beamforming weight vector in the security scheme can be obtained by using S-Procedure and rank relaxation techniques. The benefit of the proposed scheme is showed in simulation results.

DIntrusion Detection in WSN with an Improved NSA Based on the DE-CMOP

  • Guo, Weipeng;Chen, Yonghong;Cai, Yiqiao;Wang, Tian;Tian, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5574-5591
    • /
    • 2017
  • Inspired by the idea of Artificial Immune System, many researches of wireless sensor network (WSN) intrusion detection is based on the artificial intelligent system (AIS). However, a large number of generated detectors, black hole, overlap problem of NSA have impeded further used in WSN. In order to improve the anomaly detection performance for WSN, detector generation mechanism need to be improved. Therefore, in this paper, a Differential Evolution Constraint Multi-objective Optimization Problem based Negative Selection Algorithm (DE-CMOP based NSA) is proposed to optimize the distribution and effectiveness of the detector. By combining the constraint handling and multi-objective optimization technique, the algorithm is able to generate the detector set with maximized coverage of non-self space and minimized overlap among detectors. By employing differential evolution, the algorithm can reduce the black hole effectively. The experiment results show that our proposed scheme provides improved NSA algorithm in-terms, the detectors generated by the DE-CMOP based NSA more uniform with less overlap and minimum black hole, thus effectively improves the intrusion detection performance. At the same time, the new algorithm reduces the number of detectors which reduces the complexity of detection phase. Thus, this makes it suitable for intrusion detection in WSN.

Time Series Data Cleaning Method Based on Optimized ELM Prediction Constraints

  • Guohui Ding;Yueyi Zhu;Chenyang Li;Jinwei Wang;Ru Wei;Zhaoyu Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • Affected by external factors, errors in time series data collected by sensors are common. Using the traditional method of constraining the speed change rate to clean the errors can get good performance. However, they are only limited to the data of stable changing speed because of fixed constraint rules. Actually, data with uneven changing speed is common in practice. To solve this problem, an online cleaning algorithm for time series data based on dynamic speed change rate constraints is proposed in this paper. Since time series data usually changes periodically, we use the extreme learning machine to learn the law of speed changes from past data and predict the speed ranges that change over time to detect the data. In order to realize online data repair, a dual-window mechanism is proposed to transform the global optimal into the local optimal, and the traditional minimum change principle and median theorem are applied in the selection of the repair strategy. Aiming at the problem that the repair method based on the minimum change principle cannot correct consecutive abnormal points, through quantitative analysis, it is believed that the repair strategy should be the boundary of the repair candidate set. The experimental results obtained on the dataset show that the method proposed in this paper can get a better repair effect.

Mechanism of Fatty Acid Transfer between Fatty Acid Binding Proteins and Phospolipid Model Membranes (지방산 결합단백질과 인지질막 사이의 지방산이동기전)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.8
    • /
    • pp.930-935
    • /
    • 1997
  • Fatty acid binging proteins(FABP) are distinct but related gene productes which are found in many mamalian cell types. FABP bind long chain fatty acids in vitro. However, their functions and mechanisms of action, in vivo, remain unknown . Also not known is whether all FABP function similaryly in their respective cell types. or whether different FABP have unique functions. The puropose of the present study was to assess whether different members of the FABP family exhibit different structural and function properties. A comparison was made between heart(H-FABP) and liver (L-FABP). The results show that the binding sites of both FABP are hydrophobic in nature, although the L-FABP site is more nonpolar than the H-FABP site. Additionally, the bound ligand experiences less motional constraint within the H-FABP binding site than within the L-FABP binding site. In accordance with these differences in structural properties, it was found that anthroyloxy-fatty acid transfer from H-FABP to membranes is markedly faster than from L-FABP. moreover, the mechanism of fatty acid transfer to phospholipid membranes appears to occur via transient collisional interactions between H-FABP and membranes. In contrast , transfer of fatty acid from L-FABP occurs via an aqueous diffusion mechanism.

  • PDF

QoS-based RWA Algorithm for providing QoS Services in the Next Generation Internet based on DWDM (DWDM 기반의 차세대 인터넷에서 QoS서비스 제공을 위한 QoS-based RWA 알고리즘)

  • 배정현;송현수;김성운;김영부;조기성;이현진
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.12
    • /
    • pp.27-37
    • /
    • 2003
  • In the next generation Internet(NGI) based on dense wavelength division multiplexing(DWDM) technology, QoS RWA considering various QoS parameters of DWDM networks is regard as one of the key issues in providing real-time multimedia services. However, finding a qualified path meeting multi-constraints is generally NP-complete problem. It is insufficient for QoS RWA researches in DWDM networks that must consider QoS parameter as well as wavelength-continuity constraint. This paper proposes qualified path routing (QPR) algorithm with minimum computation and implementation complexity based on flooding method to accomplish QoS routing and wavelength assignment (RWA). We also introduce a QoS-based RWA mechanism considering multi-constraint such as optical signal quality attributes, survivability and wavelength-continuity constraint combined with proposed routing algorithm. Simulation results show superior efficiency of the proposed algorithms in terms of blocking probability, routing overhead and survivability ratio.

Design Optimization for Kinematic Characteristics of Automotive Suspension considering Constraints (구속조건을 고려한 자동차 현가장치 기구특성의 최적설계)

  • Lee, Chang-Ro;Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.306-311
    • /
    • 2017
  • This paper deals with the design optimization of the kinematic characteristics of an automotive suspension system. The kinematic characteristics of the suspension determine the attitude of the wheels, such as the toe and camber, which not only relates to tire wear during driving, but also greatly affects the control of the vehicle and its stability, which corresponds to the motion performance of the vehicle. Therefore, it is very important to determine the characteristics of the suspension mechanism at the initial stage of the design. In this study, a displacement analysis is performed to determine the kinematic properties of the suspension for the McPherson strut suspension. For this purpose, a set of constraint equations for the joints constituting the suspension mechanism was established and a program was developed to solve them. We also used ADS, a design optimization program, to obtain the desired kinematic characteristics of the suspension. As the design variables for optimization, we used the coordinates of the hard points, which are the points of attachment of the suspension to the vehicle body, and are defined as the summation of the toe-in for the up and down movement of the wheel as the objective function. As the constraint functions, the maximum camber angle and minimum roll center height, which are design requirements, are considered. As a result of this study, it was possible to determine the optimal locations of the hard points that satisfy both constraint functions and minimize the change of the toe-in.

Genetic Algorithm Based Optimal Seismic Design Method for Inducing the Beam-Hinge Mechanism of Steel Moment Frames (철골모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법)

  • Park, Hyo-Seon;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.253-260
    • /
    • 2016
  • In this paper, the optimal seismic design method for inducing the beam-hinge collapse mechanism of steel moment frames is presented. This uses the non-dominated sorting genetic algorithm II(NSGA-II) as an optimal algorithm. The constraint condition for preventing the occurrence of plastic hinges at columns is used to induce the beam-hinge collapse mechanism. This method uses two objective functions to minimize the structural weight and maximize the dissipated energy. The proposed method is verified by the application to nine story steel moment frame example. The minimum column-to-beam strength ratio to induce the beam-hinge collapse mechanism are investigated based on the simulation results. To identify the influence of panel zone on the minimum column-to-beam strength ratio, three analytic modeling methods(nonlinear centerline model without rigid end offsets, nonlinear centerline model with rigid end offsets, nonlinear model with panel zones) are used.

Performance Verification of Hinge Driving Segmented Nut Type Holding and Release Mechanism for Cube Satellite Applications (큐브위성용 힌지 구동형 분리너트식 구속분리장치의 실험적 성능검증)

  • Oh, Hyun-Ung;Lee, Myeong-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.529-534
    • /
    • 2014
  • Pyrotechnic devices are widely used for space appendages. However, a cube satellite requirements do not permit the use of explosive pyrotechnic device. A nichrome burn wire release has typically been used for holding and release of deployable appendages of the cube satellite due to its simplicity and low cost. However, relatively low mechanical constraint force and system complexity for application of multi-deployable systems are disadvantages of the conventional mechanism. To overcome these drawbacks, we developed a hinge driving segmented nut type holding and release mechanism based on the nichrome burn wire release. The functional performance of the mechanism has been verified through release function test, static load test and shock level measurement test.

A Review of the Plasticity and Constraint Induced Movement Therapy : Children With Spastic Hemiplegic Cerebral Palsy (신경가소성 원리를 이용한 강제유도운동치료에 대한 고찰: 경직성 편마비형 뇌성마비 아동을 대상으로)

  • Cho, Sang-Yoon
    • Therapeutic Science for Rehabilitation
    • /
    • v.2 no.1
    • /
    • pp.13-23
    • /
    • 2013
  • Constraint-Induced Movement Therapy(CIMT) is considered as one of the most interesting upper extremity rehabilitation in the field of neurorehabilitation. CIMT is an intensive training provided in the affected upper limb for 6 hours a day, 5 days a week for 2 weeks, while unaffected arm is restrained for 90% of waking hours. Recently, instead of CIMT, modified Constraint-Induced Movement Therapy(mCIMT) has been applied because of the clinical limitations of CIMT. CIMT or mCIMT studies have used various outcome instruments to measure different aspects of upper limb function after intervention. There are various kinds of evaluation tools to measure different aspects of upper limb function after CIMT intervention. It has been proven that Pediatric Motor Activity Log(PMAL), Quality of Upper Extremities Skills Test(QUEST), Melbourne Assessment of Unilateral Upper Limb Function(MAULF), Assisting Hand Assessment (AHA) are effective. The purpose of this study was to investigate the cortical change in children with hemiplegic cerebral palsy after CIMT. As a result, use-dependent cortical reorganization was revealed. Also, increased activity of the contralateral motor cortex and decreased activity of the ipsilateral cortex were found. It supports the mechanism of cortical reorganization, the principles of neural plasticity and specifically activation of the contralateral cortex, for improving upper limb function after CIMT.

A Study on Shape Design of Cylindrical Cam with Rotating Roller Follower in Roller-Gear-Cam Mechanism (롤러기어캠 기구를 위한 회전운동형 롤러 종동절을 가진 원통 캠의 형상 설계에 관한 연구)

  • Sin, Jung-Ho;Gang, Dong-U;Yun, Ho-Eop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1527-1533
    • /
    • 2002
  • When a mechanism transfers a motion to an intersected shaft, a cylindrical cam mechanism may be the best choice among the mechanisms. The cylindrical cam with a roller follower provides to transfer the motions to the intersect shafts simply without other connecting equipments of the intersect shafts. Typical example may be a roller-gear-cam mechanism. But the shape of the cam must be exactly defined in order to satisfy the conditions for the prescribed motion of the follower. This paper proposes a new method for the shape design of the cylindrical cams and also a CAD program is developed by using the proposed method. The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematic constraints. The constraint used in the relative velocity method is that the relative velocity must be parallel to a common tangent line at the contact point of two independent bodies, i. e. the cam and the follower. Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. Finally, this paper presents an example in order to prove the accuracy of the proposed methods in this paper and the application of the CAD program"CamDesign".