• Title/Summary/Keyword: constraint feasibility

Search Result 90, Processing Time 0.032 seconds

Two-Dimensional Trajectory Optimization for Soft Lunar Landing Considering a Landing Site

  • Park, Bong-Gyun;Ahn, Jong-Sun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.288-295
    • /
    • 2011
  • This paper addresses minimum-fuel, two-dimensional trajectory optimization for a soft lunar landing from a parking orbit to a desired landing site. The landing site is usually not considered when performing trajectory optimization so that the landing problem can be handled. However, for precise trajectories for landing at a desired site to be designed, the landing site has to be considered as the terminal constraint. To convert the trajectory optimization problem into a parameter optimization problem, a pseudospectral method was used, and C code for feasible sequential quadratic programming was used as a numerical solver. To check the reliability of the results obtained, a feasibility check was performed.

Processing Korean Cleft Constructions in a Typed Feature Structure Grammar (한국어 분열구문의 전산학적 처리)

  • Kim, Jong-Bok;Yang, Jaehyung
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.48-52
    • /
    • 2008
  • The expression KES, one of the most commonly used words in the Korean language, has various usages. This expression is also used to express English-like cleft constructions. It appears to provide at two different types of cleft constructions: predicational and identificational. The paper tries to provide a constraint-based analysis of these two types of Korean cleft constructions and tries to implement the analysis in the LKB system to check its feasibility. In particular, the paper shows how a typed feature structure grammar, couched upon HPSG, can provide a robust basis for parsing Korean cleft constructions.

  • PDF

An Efficient Localization of Mobile Robot in RFID Sensor Space (RFID 센서 공간에서의 모바일 로봇의 효율적인 위치 인식)

  • Choi, Byoung-Suk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • This paper presents an efficient localization scheme for an indoor mobile robot using RFID tags on the floor. The mobile robot carries an RFID reader at the bottom, which reads the RFID tags on the floor to localize the mobile robot. Each RFID tar on the floor stores its own absolute position which is used to calculate the position and velocity of the mobile robot. Locating the RFID tags on the floor, which constructs an intelligent sensor space, may require several factors to be considered: economics feasibility and accuracy. In this paper, the optimal allocation scheme of the RFID tags on the floor to satisfy the accuracy constraint has been proposed and verified by the experiments. Based on the RFID reading, the mobile robot navigation has been successfully demonstrated to avoid obstacles and to reach the goal within a pre-specified time.

An Approach for Optimal Dispatch Scheduling Incorporating Transmission Security Constraints (송전계통 안전도 제약조건을 반영한 급전계획 알고리즘 개발에 관한 연구)

  • Chung, Koo-Hyung;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.12
    • /
    • pp.597-602
    • /
    • 2005
  • The introduction of competition in electricity market emphasizes the importance of sufficient transmission capacities to guarantee various electricity transactions. Therefore, when dispatch scheduling, transmission security constraints should be considered for the economic and stable electric power system operation. In this paper, we propose an optimal dispatch scheduling algorithm incorporating transmission security constraints. For solving these constraints, the dispatch scheduling problem is decomposed into a master problem to calculate a general optimal power flow (OPF) without transmission security constraints and several subproblems to inspect the feasibility of OPF solution under various transmission line contingencies. If a dispatch schedule given by the master problem violates transmission security constraints, then an additional constraint is imposed to the master problem. Through these iteration processes between the master problem and subproblems, an optimal dispatch schedule reflecting the post-contingency rescheduling is derived. Moreover, since interruptible loads can positively participate as generators in the competitive electricity market, we consider these interruptible loads active control variables. Numerical example demonstrates efficiency of the proposed algorithm.

Optimization of Reinforced Concrete Frames Subjected to Dynamic Loads (동적 거동을 받는 철근 콘크리트 뼈대 구조의 최적화)

  • Park, Moon Ho;Kim, Sang Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.439-452
    • /
    • 1994
  • A method to optimize the cost of R/C frames and an algorithm of the optimal limit state design for R/C frames subjected to dynamic loads are presented. The modal superposition method was used to find the dynamic responses of the frames. Each member of R/C frame is made up of more than two elements and the stiffness matrix and consistent mass matrix of three d.o.f in the node of each element was used to include axial, shear and flexural effects. The objective function to be minimized formulated the cost of materials, steel and concrete, and optimised to satisfy the behaviors of R/C frame and each constraint imposed by the limit state requirements. Both objective function and each constraint are derived in terms of design variables which include the effective depth, beam width, compression and tension steel area, and column shear steel area. A few applications are presented which demonstrate the feasibility, the validity and efficiency of the algorithm for automated optimum design of R/C frames where dynamic behavior is to be considered.

  • PDF

Application of the BMORE Plot to Analyze Simulation Output Data with Bivariate Performance Measures (이변량 성과척도를 가지는 시뮬레이션 결과 분석을 위한 BMORE 도표의 활용)

  • Lee, Mi Lim;Lee, Jinpyo;Park, Minjae
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.83-93
    • /
    • 2020
  • Bivariate measure of risk and error(BMORE) plot is originally designed to depict bivariate output data and related statistics obtained from a stochastic simulation such as sample mean, median, outliers, and a boundary of a certain percentile of simulation data. When compared to the static numbers, the plot has a big advantage in visualization that enables scholars and practitioners to understand the potential variability and risk in the simulation data. In this study, beyond just the construction of the plot to depict the variability of a certain system, we add a chance constraint to the plot and apply it for decision making such as checking the feasibility of systems, comparing performances of the systems on statistical background, and also analyzing the sensitivity of the problem parameters. In order to demonstrate an application of the plot, we employ an inventory management problem as an example. However, the techniques and algorithms suggested in this paper can be applied to any other problems comparing systems on bivariate performance measures with simulation/experiment results.

Robust optimization of reinforced concrete folded plate and shell roof structure incorporating parameter uncertainty

  • Bhattacharjya, Soumya;Chakrabortia, Subhasis;Dasb, Subhashis
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.707-726
    • /
    • 2015
  • There is a growing trend of considering uncertainty in optimization process since last few decades. In this regard, Robust Design Optimization (RDO) scheme has gained increasing momentum because of its virtue of improving performance of structure by minimizing the variation of performance and ensuring necessary safety and feasibility of constraint under uncertainty. In the present study, RDO of reinforced concrete folded plate and shell structure has been carried out incorporating uncertainty in the relevant parameters by Monte Carlo Simulation. Folded plate and shell structures are among the new generation popular structures often used in aesthetically appealing constructions. However, RDO study of such important structures is observed to be scarce. The optimization problem is formulated as cost minimization problem subjected to the force and displacements constraints considering dead, live and wind load. Then, the RDO is framed by simultaneously optimizing the expected value and the variation of the performance function using weighted sum approach. The robustness in constraint is ensured by adding suitable penalty term and through a target reliability index. The RDO problem is solved by Sequential Quadratic Programming. Subsequently, the results of the RDO are compared with conventional deterministic design approach. The parametric study implies that robust designs can be achieved by sacrificing only small increment in initial cost, but at the same time, considerable quality and guarantee of the structural behaviour can be ensured by the RDO solutions.

Development of Integrated Wireless Network for Railway (철도전용 통합무선망 개발)

  • Song, Yongsoo;Kim, Yong-Kyu;Baek, Jong-Hyen
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.551-557
    • /
    • 2013
  • This research aims to conduct a study on the feasibility of the LTE communication method for developing a dedicated integrated railway wireless network. An empirical analysis was carried out by establishing a dedicated integrated railway wireless network in an approximately 12km section between Illo station and Daebul station on the Honam line. Korean wireless communication methods for railway safety are different depending on each line, which makes it difficult for railway workers to cooperate with. This causes various problems. There is the ever-present risk of accidents due to call disconnection between wireless communication systems, frequency interference from commercial networks, and crosstalk. This study verified the feasibility of the 4th generation communication system, LTE, over the dedicated integrated railway wireless network as a solution for the above mentioned problems. The result shows this communication system exceeded existing performance standards of Europe GSM-R in every test item despite the location constraint of train tracks on the base station establishment.

PGA: An Efficient Adaptive Traffic Signal Timing Optimization Scheme Using Actor-Critic Reinforcement Learning Algorithm

  • Shen, Si;Shen, Guojiang;Shen, Yang;Liu, Duanyang;Yang, Xi;Kong, Xiangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4268-4289
    • /
    • 2020
  • Advanced traffic signal timing method plays very important role in reducing road congestion and air pollution. Reinforcement learning is considered as superior approach to build traffic light timing scheme by many recent studies. It fulfills real adaptive control by the means of taking real-time traffic information as state, and adjusting traffic light scheme as action. However, existing works behave inefficient in complex intersections and they are lack of feasibility because most of them adopt traffic light scheme whose phase sequence is flexible. To address these issues, a novel adaptive traffic signal timing scheme is proposed. It's based on actor-critic reinforcement learning algorithm, and advanced techniques proximal policy optimization and generalized advantage estimation are integrated. In particular, a new kind of reward function and a simplified form of state representation are carefully defined, and they facilitate to improve the learning efficiency and reduce the computational complexity, respectively. Meanwhile, a fixed phase sequence signal scheme is derived, and constraint on the variations of successive phase durations is introduced, which enhances its feasibility and robustness in field applications. The proposed scheme is verified through field-data-based experiments in both medium and high traffic density scenarios. Simulation results exhibit remarkable improvement in traffic performance as well as the learning efficiency comparing with the existing reinforcement learning-based methods such as 3DQN and DDQN.

Redundancy Trajectory Generation for Biped Robot Manipulators (2족 보행로봇을 위한 여유자유도 궤적 생성)

  • Yeon, Je-Sung;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1014-1022
    • /
    • 2009
  • A biped robot in locomotion can be regarded to be kinetically redundant in that the link-chain from its foot on the ground to its swing foot has more degrees of freedom that needed to realize stable bipedal locomotion. This paper proposes a new method to generate a trajectory for bipedal locomotion based on this redundancy, which directly generates a locomotion trajectory at the joint level unlike some other methods such as LIPM (linear inverted-pendulum mode) and GCIPM (gravity-compensated inverted-pendulum mode), each of which generates a trajectory of the center of gravity or the hip link under the assumption of the dominance of the hip-link inertia before generating the trajectory of the whole links at the joint level. For the stability of the trajectory generated in the proposed method, a stability condition based on the ZMP (zero-moment point) is used as a constraint as well as other kinetic constraints for bipedal motions. A 6-DOF biped robot is used to show how a stable locomotion trajectory can be generated in the sagittal plane by the proposed method and to demonstrate the feasibility of the proposed method.