• Title/Summary/Keyword: constraint equations

Search Result 254, Processing Time 0.018 seconds

Analysis of Stability for Overhead Crane Systems (천정 크레인시스템의 안정성 해석)

  • Ban Gab Su;Lee Kwang Ho;Mo Chang Ki;Lee Jong Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.128-135
    • /
    • 2005
  • Overhead crane systems consist of trolley, girder, rope, objects, trolley motor, girder motor, and hoist motor. The dynamic system of these systems becomes a nonlinear state equations. These equations are obtained by the nonlinear equations of motion which are derived from transfer functions of driving motors and equations of motion for objects. From these state equations, Lyapunov functions of overhead crane systems are derived from integral method. These functions secure stability of autonomous overhead crane systems. Also constraint equations of driving motors of trolley, girder, and hoist are derived from these functions. From the results of computer simulation, it is founded that overhead crane systems is secure.

Dynamic Contact Analysis of Spur Gears (평기어의 동접촉 해석)

  • Lee, Ki-Su;Jang, Tae-Sa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.148-159
    • /
    • 1999
  • A numerical method is presented for the dynamic analysis of spur gears rotating with very high angular speeds. For an efficient computation each gear is assumed to consist of a rotating rigid disk and an elastic tooth having mass, and finite element formulations are used for the equations of motion of the tooth. The geometric constraint is imposed between the rigid disk and the elastic tooth to fix them, and contact condition is imposed between the meshing teeth of the gears. At each iteration of each time step the Lagrange multiplier and contact force are revised by using the constraint error vector, and then the whole equations of motion are time integrated with the given Lagrange multiplier and contact force. For the accurate solution the velocity and acceleration constraints as well as the displacement constraint are satisfied by the monotone reductions of the constraint error vectors. Computing procedures associated with the iterative schemes are explained and numerical simulations are conducted with the spur gears.

  • PDF

Use of Parametric Generalized Coordinates for Kinematic Constraint Formulation of Low Degree-of-Freedom Joints (저자유도 조인트의 구속조건 생성을 위한 파라메트릭 일반좌표 이용)

  • Lee, Jung Keun;Lee, Chul Ho;Bae, Dae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1261-1267
    • /
    • 2013
  • In multibody mechanical systems, low-degree-of-freedom (DOF) joints such as revolute and translational joints are much more frequently used than high-DOF joints. In order to formulate kinematic constraint equations, especially for low-DOF joints, in an efficient and systematic manner, this paper presents a parametric generalized coordinate formulation as a new approach for describing constraint equations. In the proposed approach, joint constraint equations are formulated in terms of a mixed set of Cartesian and parametric generalized coordinates, which drastically reduces the complexity and computational cost of the partial derivatives of the constraints such as the constraint Jacobian. The proposed formulation is validated using a simple cylinder-crank system with an implicit integrator.

Dynamics of the Macpherson Strut Motor-Vehicle Suspension System in Point and Joint Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1287-1296
    • /
    • 2003
  • In this paper the dynamic analysis of the Macpherson strut motor-vehicle suspension system is presented. The equations of motion are formulated using a two-step transformation. Initially, the equations of motion are derived for a dynamically equivalent constrained system of particles that replaces the rigid bodies by applying Newton's second law The equations of motion are then transformed to a reduced set in terms of the relative joint variables. Use of both Cartesian and joint variables produces an efficient set of equations without loss of generality For open chains, this process automatically eliminates all of the non-working constraint forces and leads to an efficient solution and integration of the equations of motion. For closed loops, suitable joints should be cut and few cut-joints constraint equations should be included for each closed chain. The chosen suspension includes open and closed loops with quarter-car model. The results of the simulation indicate the simplicity and generality of the dynamic formulation.

Computational Method for Dynamic Analysis of Constrained Mechanical Systems Using Partial Velocity Matrix Transformation

  • Park, Jung-Hun;Yoo, Hong-Hee;Hwang, Yo-Ha
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.159-167
    • /
    • 2000
  • A computational method for the dynamic analysis of a constrained mechanical system is presented in this paper. The partial velocity matrix, which is the null space of the Jacobian of the constraint equations, is used as the key ingredient for the derivation of reduced equations of motion. The acceleration constraint equations are solved simultaneously with the equations of motion. Thus, the total number of equations to be integrated is equivalent to that of the pseudo generalized coordinates, which denote all the variables employed to describe the configuration of the system of concern. Two well-known conventional methods are briefly introduced and compared with the present method. Three numerical examples are solved to demonstrate the solution accuracy, the computational efficiency, and the numerical stability of the present method.

  • PDF

An Implementation Method of Linearized Equations of Motion for Multibody Systems with Closed Loops

  • Bae, D.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.71-78
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the variables are tightly coupled by the position, velocity, and acceleration level coordinates, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all variables, which are coupled by the constraints. The position velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The Perturbed constraint equations are then simultaneously solved for variations of all variables only in terms of the variations of the independent variables. Finally, the relationships between the variations of all variables and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent variables variations.

Kinematic Design Sensitivity Analysis of Suspension System Using a Symbolic Computation Method (기호계산 기법을 이용한 현가장치의 기구학적 민감도 해석)

  • 송성재;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.247-259
    • /
    • 1996
  • Kinematic design sensitivity analysis for vehicle in suspension systems design is performed. Suspension systems are modeled using composite joins to reduce the number of the constraint equations. This allows a semi-analytical approach that is computerized symbolic manipulation before numerical computations and that may compensate for their drawbacks. All the constraint equations including design variables are derived in symbolic equations for sensitivity analysis. By directly differentiating the equations with respect to design variables, sensitivity equations are obtained. Since the proposed method only requires the hard point data, sensitivity analysis is possible in suspension design stage.

  • PDF

Explicit Motion of Dynamic Systems with Position Constraints

  • Eun, Hee-Chang;Yang, Keun-Hyuk;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.538-544
    • /
    • 2003
  • Although many methodologies exist for determining the constrained equations of motion, most of these methods depend on numerical approaches such as the Lagrange multiplier's method expressed in differential/algebraic systems. In 1992, Udwadia and Kalaba proposed explicit equations of motion for constrained systems based on Gauss's principle and elementary linear algebra without any multipliers or complicated intermediate processes. The generalized inverse method was the first work to present explicit equations of motion for constrained systems. However, numerical integration results of the equation of motion gradually veer away from the constraint equations with time. Thus, an objective of this study is to provide a numerical integration scheme, which modifies the generalized inverse method to reduce the errors. The modified equations of motion for constrained systems include the position constraints of index 3 systems and their first derivatives with respect to time in addition to their second derivatives with respect to time. The effectiveness of the proposed method is illustrated by numerical examples.

Steady-State Equilibrium Analysis of a Multibody System Driven by Constant Generalized Speeds

  • Park, Dong-Hwan;Park, Jung-Hun;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1239-1245
    • /
    • 2002
  • A formulation which seeks steady-state equilibrium positions of constrained multibody systems driven by constant generalized speeds is presented in this paper. Since the relative coordinates are employed, constraint equations at cut joints are incorporated into the formulation. To obtain the steady-state equilibrium position of a multibody system, nonlinear equations are derived and solved iteratively. The nonlinear equations consist of the force equilibrium equations and the kinematic constraint equations. To verify the effectiveness of the proposed formulation, two numerical examples are solved and the results are compared with those of a commercial program.

A Linearization Method for Constrained Mechanical System (구속된 다물체시스템의 선형화에 관한 연구)

  • Bae, Dae-Sung;Yang, Seong-Ho;Seo, Jun-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1303-1308
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of ail relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.