• Title/Summary/Keyword: constrained motion

Search Result 195, Processing Time 0.028 seconds

Analysis on Kinematic Characteristics for a Spherical 3-DOF Parallel Mechanism with Constrained Stewart Platform Structure (스튜워트 플랫폼 구조를 이용한 구형 3-자유도 병렬 메커니즘의 기구학 특성 분석)

  • 이석희;김희국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.520-524
    • /
    • 2004
  • In this work, a novel spherical 3-dof parallel mechanism is proposed and analyzed. The mechanism consists of three RRPS serial subchains and an additional passive 3-dof type serial subchain. Three RRPS serial subchains alone may form a structure of 6-DOF Stewart Platform mechanism. However, in the proposed mechanism, an additional passive serial subchain acts as constraints to restrict the output motion of the mechanism within 3-DOF spherical space. The closed form solutions of position analysis of the proposed mechanism and its first-order kinematic model are derived. Then its workspace size and kinematic characteristics are examined via kinematic isotropic index.

  • PDF

Effects of Tread, Wheelbase and Axle Load Distribution on Tractor Vibrations (윤거, 축거, 차축 하중 분포가 트랙터 진동에 미치는 영향)

  • 조춘환;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.293-305
    • /
    • 1996
  • Effects on the tractor vibrations of tread, wheelbase and axle load distribution were analyzed by using mathematical models of tractor and random road surface. A 4 degrees of freedom tractor model was developed to predict the bounce, pitch and roll motions of tractor. The front axle which is constrained to roll with respect to tractor body was also included in the model. A random road profile was generated and used as an excitation input to the tractor. Output vibrations of the model were predicted and analyzed by a computer simulation method. In general, longer tread tends to reduce rolling and longer wheelbase does bouncing and pitching motions. Tractor vibrations were minimum when the ratio of front to rear axle loads was in the range of 30:70-35:65. Sensitivity analysis showed that rolling and pitching motions most sensitively varied with changes in tread and wheelbase while bouncing motion did with the location of mass center.

  • PDF

Multiscale Spatial Position Coding under Locality Constraint for Action Recognition

  • Yang, Jiang-feng;Ma, Zheng;Xie, Mei
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1851-1863
    • /
    • 2015
  • – In the paper, to handle the problem of traditional bag-of-features model ignoring the spatial relationship of local features in human action recognition, we proposed a Multiscale Spatial Position Coding under Locality Constraint method. Specifically, to describe this spatial relationship, we proposed a mixed feature combining motion feature and multi-spatial-scale configuration. To utilize temporal information between features, sub spatial-temporal-volumes are built. Next, the pooled features of sub-STVs are obtained via max-pooling method. In classification stage, the Locality-Constrained Group Sparse Representation is adopted to utilize the intrinsic group information of the sub-STV features. The experimental results on the KTH, Weizmann, and UCF sports datasets show that our action recognition system outperforms the classical local ST feature-based recognition systems published recently.

Multiple-Mode Structural Vibration Control Using Negative Capacitive Shunt Damping

  • Park, Chul-Hue;Park, Hyun-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1650-1658
    • /
    • 2003
  • This paper deals with a novel shunt circuit, which is capable of suppressing multimode vibration amplitudes by using a pair of piezoceramic patches. In order to describe the characteristic behaviors of a piezoelectric damper connected with a series and a parallel resistor-negative capacitor branch circuit, the stiffness ratio and loss factor with respect to the non-dimensional frequency are considered. The mechanism of the shunt damper is also described by considering a shunt voltage constrained by shunt impedance. To obtain a guideline model of the piezo/beam system with a negative capacitive shunting, the governing equations of motion are derived through the Hamilton's principle and a piezo sensor equation as well as a shunt-damping matrix is developed. The theoretical analysis shows that the piezo/beam system combined with a series and a parallel resistor-negative capacitor branch circuit developed in this study can significantly reduce the multiple-mode vibration amplitudes over the whole structural frequency range.

A Basic Study of High Frequency Rattling Noise (고주파 래틀링 소음의 기초 연구)

  • 이금정;박철희;주재만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.88-93
    • /
    • 1998
  • Since rattling noise, which occur in mechanical linkage with free play or glove boxes in passenger cars, play an important role in the generation of industrial noise and vibration, it is interest to study these dynamics. A difference equations are derived which described the motions of a mass constrained by pre-compressed spring and forced by a high frequency base excitation. Two types of saddle are founded from these difference equations and the stable and unstable manifolds are constructed in these saddle point. For a certain region in a parameter space of exciting displacement and coefficient of restitution, transversal intersections of stable and unstable manifolds exist. Therefore it is founded that there are large families of periodic and irregular non-periodic motions in rattling system i.e. chaos motion is observed.

  • PDF

Partitioning method using kinematic uncoupling in train dynamics (열차 동역학에서 기구학적 비연성을 이용한 분할 해석 방법)

  • Park, J.H.;Yoo, H.H.;Hwang, Y.H.;Kim, C.H.
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 1999
  • In this paper, an efficient and accurate formulation for the transient analysis of constrained multibody systems is presented. The formulation employs Kane's method along with the null space method. Kane's method reduces the dimension of equations of motion by using partial velocity matrix: it can improve the efficiency of the formulation. Furthermore, the formulation partitions the coefficient matrix of linear and nonlinear equations into several sub-matrices using kinematic uncoupling. This can solve the equations more efficiently. The proposed formulation can be used to perform dynamic analysis of systems which can be partitioned into several sub-systems such as train systems. One numerical example is given to demonstrate the efficiency and accuracy of the formulation, and another numerical example is given to show its application to the train systems.

  • PDF

Energy Harvesting Framework for Mobile Sensor Networks with Remote Energy Stations (원격 에너지 저장소를 가진 이동 센서 네트워크를 위한 에너지 수확 체계)

  • Kim, Seong-Woo;Lee, Jong-Min;Kwon, Sun-Gak
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1184-1191
    • /
    • 2009
  • Energy harvesting from environment can make the energy constrained systems such as sensor networks to sustain their lifetimes. However, environmental energy is highly variable with time, location, and other factors. Unlike the existing solutions, we solved this problem by allowing the sensor nodes with mobilizer to move in search of energy and recharge from remote energy station. In this paper we present and analyze a new harvesting aware framework for mobile sensor networks with remote energy station. The framework consists of energy model, motion control system and data transfer protocol. Among them, the objective of our data transfer protocol is to route a data packet geographically towards the target region and at the same time balance the residual energy and the link connectivity on nodes with energy harvesting. Our results along with simulation can be used for further studies and provide certain guideline for realistic development of such systems.

Vibration Analysis of the Active Multi-Layer Beams by Using Spectrally Formulated Exact Natural Modes

  • Lee, Usik;Kim, Joohong;Andrew Y. T. Leung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.199-209
    • /
    • 2001
  • Modal analysis method (MAM) is introduced for the fully coupled structural dynamic problems. In this paper, the beam with active constrained layered damping (ACLD) treatment is considered as a representative problem. The ACLD beam consists of a viscoelastic layer that is sandwiched between the base beam structure and an active piezoelectric layer. The exact damped natural modes are spectrally formulated from a set of fully coupled dynamic equations of motion. The orthogonality property of the exact damped natural modes is then derived in a closed form to complete the modal analysis method. The accuracy of the present MAM is evaluated through some illustrative examples: the dynamic characteristics obtained by the present MAM are compared with the results by spectral element method (SEM) and finite element method (FEM). It is numerically proved that MAM solutions become identical to the accurate SEM solutions as the number of exact natural used in MAM is increased.

  • PDF

Hybrid vibration control of smart laminated composite beams using piezoelectric and viscoelastic material (압전재료와 점탄성 재료를 이용한 지능 적층보의 하이브리드 진동 제어)

  • 강영규;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.133-137
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained-layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method, This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

Vibration Control of Smart Laminated Composite Plates Using Piezoceramic Sensor/Actuators and Viscoelastic Material (압전 세라믹 감지기/작동기와 점탄성 재료를 이용한 지능형 복합 적층판의 진동 제어)

  • 강영규;서경민;이시복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.37-42
    • /
    • 2001
  • Active vibration control of laminated composite plates has been carried out to design structure with maximum possible damping capacity, using piezoceramic sensor/actuators and passive constrained-layer damping treatment. The equations of motion are derived for symmetrical, multi-layer laminated plates. The damping ratio(ζ) and modal damping(2ζ$\omega$) of the first bending and torsional modes are calculated by means of iterative complex eigensolution method for both passive and active vibration control. This paper addresses a design strategy of laminated composite plate under structural vibrations.

  • PDF