• Title/Summary/Keyword: constrained learning

Search Result 63, Processing Time 0.023 seconds

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

The Effect of Supply Chain Dynamic Capabilities, Open Innovation and Supply Uncertainty on Supply Chain Performance (공급사슬 동적역량, 개방형 혁신, 공급 불확실성이 공급사슬 성과에 미치는 영향)

  • Lee, Sang-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.481-491
    • /
    • 2018
  • As the global business environment is dynamic, uncertain, and complex, supply chain management determines the performance of the supply chain in terms of the utilization of resources and capabilities of companies involved in the supply chain. Companies pursuing open innovation gain greater access to the external environment and accumulate knowledge flows and learning experiences, and may generate better business performance from dynamic capabilities. This study analyzed the effects of supply chain dynamic capabilities, open innovation, and supply uncertainty on supply chain performance. Through questionnaires on 178 companies listed on KOSDAQ, empirical results are as follows: First, integration and reactivity capabilities among supply chain dynamic capabilities have a positive effect on supply chain performance. Second, the moderating effect of open innovation showed a negative correlation in the case of information exchange, and a positive correlation in the cases of integration, cooperation and reactivity. Third, two of the 3-way interaction terms, "information exchange*open innovation*supply uncertainty" and "integration*open innovation*supply uncertainty" were statistically significant. The implications of this study are as follows: First, as the supply chain needs to achieve optimization of the whole process between supply chain components rather than individual companies, dynamic capabilities play an important role in improving performance. Second, for KOSDAQ companies featuring limited capital resources, open innovation that integrates external knowledge is valuable. In order to increase synergistic effects, it is necessary to develop dynamic capabilities accordingly. Third, since resources are constrained, managers must determine the type or level of capabilities and open innovation in accordance with supply uncertainty. Since this study has limitations in analyzing survey data, it is necessary to collect secondary data or longitudinal data. It is also necessary to further analyze the internal and external factors that have a significant impact on supply chain performance.