• Title/Summary/Keyword: constitutive relationships

Search Result 89, Processing Time 0.024 seconds

Static analysis of shear-deformable shells of revolution via G.D.Q. method

  • Artioli, Edoardo;Viola, Erasmo
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.459-475
    • /
    • 2005
  • This paper deals with a novel application of the Generalized Differential Quadrature (G.D.Q.) method to the linear elastic static analysis of isotropic rotational shells. The governing equations of equilibrium, in terms of stress resultants and couples, are those from Reissner-Mindlin shear deformation shell theory. These equations, written in terms of internal-resultants circular harmonic amplitudes, are first put into generalized displacements form, by use of the strain-displacements relationships and the constitutive equations. The resulting systems are solved by means of the G.D.Q. technique with favourable precision, leading to accurate stress patterns.

Nonlinear analysis of reinforced concrete beam elements subject to cyclical combined actions of torsion, biaxial flexure and axial forces

  • Cocchi, Gian Michele;Tiriaca, Paolo
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.829-862
    • /
    • 2004
  • This paper presents a method for the nonlinear analysis of beam elements subjected to the cyclical combined actions of torsion, biaxial flexure and axial forces based on an extension of the disturbed compression field (DSFM). The theoretical model is based on a hybrid formulation between the full rotation of the cracks model and the fixed direction of the cracking model. The described formulation, which treats cracked concrete as an orthotropic material, includes a new approach for the evaluation of the re-orientation of both the compression field and the deformation field by removing the restriction of their coincidence. A new equation of congruence permits evaluating the deformation of the middle line. The problem consists in the solution of coupled nonlinear simultaneous equations expressing equilibrium, congruence and the constitutive laws. The proposed method makes it possible to determine the deformations of the beam element according to the external stresses applied.

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 2. Numerical analysis

  • Gawin, D.;Majorana, C.E.;Pesavento, F.;Schrelfer, B.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.203-214
    • /
    • 2005
  • In the Part 1 paper (Gawin, et al. 2005) some experimental results concerning micro-structural tests, permeability measurements and stress-strain tests of four types of High Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$) are presented and discussed. On the basis of these experimental results parameters of the constitutive relationships describing influence of damage and temperature upon material intrinsic permeability at high temperature were determined. In this paper the effects of various formulations of damage-permeability coupling on results of computer simulations are analysed and compared with the results obtained by means of the previously proposed approach, that does not take into account the thermo-chemical concrete damage directly. Numerical solutions are obtained using the recently developed fully coupled model of hygro-thermal and damage phenomena in concrete at elevated temperatures. High temperature effects are considered by means of temperature and pressure dependence of several material parameters. Based on the mathematical model, the computer code HITECOSP was developed. Material parameters of the model were measured by several European laboratories, which participated in the "HITECO" research project. A model problem, concerning hygro-thermal behaviour and degradation of a HPC structure during fire, is solved. The influence of two different constitutive descriptions of the concrete permeability changes at high temperature, including thermo-chemical and mechanical damage effects, upon the results of computer simulations is analysed and discussed.

Turbidity Modeling for a Negative Buoyant Density Flow in a Reservoir with Consideration of Multiple Particle Sizes (입자크기 분포를 고려한 부력침강 저수지 밀도류의 탁도 모델링)

  • Chung, Se Woong;Lee, Heung Soo;Jung, Yong Rak
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.365-377
    • /
    • 2008
  • Large artificial dam reservoirs and associated downstream ecosystems are under increased pressure from long-term negative impacts of turbid flood runoff. Despite various emerging issues of reservoir turbidity flow, turbidity modeling studies have been rare due to lack of experimental data that can support scientific interpretation. Modeling suspended sediment (SS) dynamics, and therefore turbidity ($C_T$), requires provision of constitutive relationships ($SS-C_T$) and accounting for deposition of different SS size fractions/types distribution in order to display this complicated dynamic behavior. This study explored the performance of a coupled two-dimensional (2D) hydrodynamic and particle dynamics model that simulates the fate and transport of a turbid density flow in a negatively buoyant density flow regime. Multiple groups of suspended sediment (SS), classified by the particle size and their site-specific $SS-C_T$ relationships, were used for the conversion between field measurements ($C_T$) and model state variables (SS). The 2D model showed, in overall, good performance in reproducing the reservoir thermal structure, flood propagation dynamics and the magnitude and distribution of turbidity in the stratified reservoir. Some significant errors were noticed in the transitional zone due to the inherent lateral averaging assumption of the 2D hydrodynamic model, and in the lacustrine zone possibly due to long-term decay of particulate organic matters induced during flood runoffs.

An In-silico Simulation Study on Size-dependent Electroelastic Properties of Hexagonal Boron Nitride Nanotubes (인실리코 해석을 통한 단일벽 질화붕소 나노튜브의 크기 변화에 따른 압전탄성 거동 예측연구)

  • Jaewon Lee;Seunghwa Yang
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.132-138
    • /
    • 2024
  • In this study, a molecular dynamics simulation study was performed to investigate the size-dependent electroelastic properties of single-walled boron nitride nanotubes(BNNT). To describe the elasticity and polarization of BNNT under mechanical loading, the Tersoff potential model and rigid ion approximation were adopted. For the prediction of piezoelectric constants and Young's modulus of BNNTs, piezoelectric constitutive equations based on the Maxwell's equation were used to calculate the strain-electric displacement and strain-stress relationships. It was found that the piezoelectric constants of BNNTs gradually decreases as the radius of the tubes increases showing a nonnegligible size effect. On the other hand, the elastic constants of the BNNTs showed opposites trends according to the equivalent geometrical assumption of the tubular structures. To establish the structure-property relationships, localized configurational change of the primarily bonded B-N bonded topology was investigated in detail to elucidate the BNNT curvature dependent elasticity.

Stress Path Dependent Deformation Characteristics of A Normally Consolidated Saturated Cohesive Soil (정규압밀 포화점성토의 응력경로에 따른 변형특성)

  • 권오엽;정인준
    • Geotechnical Engineering
    • /
    • v.5 no.2
    • /
    • pp.45-56
    • /
    • 1989
  • The influence of stress path on the deformation characteristics of clay has been studied through a series of stress-path controlled triaxial tests on artificially sedimented and normally con- solidated Kaolinite. It has been found that there exists a critical stress increment ratio, Kc, in which stress·strain characteristics possesses a linear relationships and beyond Kc, strain hardening. A modified hyperbolic constitutive model for the strain hardening behavior has been formulated based on the Drnevich's hyperbolic function. And, a method of settlement analyses has been Proposed wherein the effect of stress path during consolidation is taken into account.

  • PDF

An analytical model of layered continuous beams with partial interaction

  • Schnabl, Simon;Planinc, Igor;Saje, Miran;Cas, Bojan;Turk, Goran
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.263-278
    • /
    • 2006
  • Starting with the geometrically non-linear formulation and the subsequent linearization, this paper presents a consistent formulation of the exact mechanical analysis of geometrically and materially linear three-layer continuous planar beams. Each layer of the beam is described by the geometrically linear beam theory. Constitutive laws of layer materials and relationships between interlayer slips and shear stresses at the interface are assumed to be linear elastic. The formulation is first applied in the analysis of a three-layer simply supported beam. The results are compared to those of Goodman and Popov (1968) and to those obtained from the formulation of the European code for timber structures, Eurocode 5 (1993). Comparisons show that the present and the Goodman and Popov (1968) results agree completely, while the Eurocode 5 (1993) results differ to a certain degree. Next, the analytical solution is used in formulating a general procedure for the analysis of layered continuous beams. The applications show the qualitative and quantitative effects of the layer and the interlayer slip stiffnesses on internal forces, stresses and deflections of composite continuous beams.

Load-Displacement Formulations of Low-rise Unbounded RC Shear Walls with or without Openings

  • Lou, K. Y.;Cheng, F. Y.;Sheu, M. S.;Zhang, X. Z.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.117-130
    • /
    • 2001
  • Investigations of low-rice unbounded reinforced concrete shear walls with or without openings are performed with comparison of analytical and experimental results. Theoretical analysis is based on nonlinear finite element algorithm, which incorporates concrete failure criterion and nonlinear constitutive relationships. Studios focus on the effects of height-to-length ratio of shear walls, opening ratio, horizontal and vertical reinforcement radios, and diagonal reinforcement. Analytical solutions conform well with experimental results. Equations for cracking, yielding and ultimate loads with corresponding lateral displacements are derived by regression using analytical results and experimental data. Also, failure modes of low-rise unbounded shear walls are theoretically investigated. An explanation of change in failure mode is ascertained by comparing analytical results and ACI code equations. Shear-flexural failure can be obtained with additional flexural reinforcement to increase a wall's capacity. This concept leads to a design method of reducing flexural reinforcement in low-rise bounded solid shear wall's. Avoidance of shear failure as well as less reinforcement congestion leer these walls is expected.

  • PDF

A Study on the Applicability of Hyperbolic Settlement Prediction Method to Consolidation Settlement in the Dredged and Reclaimed Ground (준설매립지반의 압밀침하에 대한 쌍곡선 침하예측기법의 적용성 연구)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Jeon, Jin-Yong
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.11-17
    • /
    • 2008
  • Applicability of hyperbolic settlement prediction method to consolidation settlement in the dredged and reclaimed ground was assessed by analyzing results of centrifuge tests modelling self-weight consolidation of soft marine clay. From literature review about self-weight consolidation of soft marine clays located in southern coast in Korea, constitutive relationships of void ratio - effective stress - permeability and typical self-weight consolidation curves with time were obtained by analyzing centrifuge model experiments. For the condition of surcharge loading, exact solution of consolidation settlement curve obtained by using Terzaghi's consolidation theory was compared with results predicted by the hyperbolic method. It was found to have its own inherent error to predict final consolidation settlement. From results of analyzing thc self-weight consolidation with time by using this method, it predicted relatively well in error range of 0.04~18% for the case of showing the linearity in the relationship between T vs T/S in the stage of consolidation degree of 60~90 %. However, it overestimated the final settlement with large errors if those relation curves were nonlinear.

  • PDF

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 1. Experimental results

  • Gawin, D.;Alonso, C.;Andrade, C.;Majorana, C.E.;Pesavento, F.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.189-202
    • /
    • 2005
  • This paper presents an analysis of some experimental results concerning micro-structural tests, permeability measurements and strain-stress tests of four types of High-Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$). These experimental results, obtained within the "HITECO" research programme are discussed and interpreted in the context of a recently developed mathematical model of hygro-thermal behaviour and degradation of concrete at high temperature, which is briefly presented in the Part 2 paper (Gawin, et al. 2005). Correlations between concrete permeability and porosity micro-structure, as well as between damage and cracks' volume, are found. An approximate decomposition of the thermally induced material damage into two parts, a chemical one related to cement dehydration process, and a thermal one due to micro-cracks' development caused by thermal strains at micro- and meso-scale, is performed. Constitutive relationships describing influence of temperature and material damage upon its intrinsic permeability at high temperature for 4 types of HPC are deduced. In the Part II of this paper (Gawin, et al. 2005) effect of two different damage-permeability coupling formulations on the results of computer simulations concerning hygro-thermo-mechanical performance of concrete wall during standard fire, is numerically analysed.