• Title/Summary/Keyword: constitutive form

Search Result 150, Processing Time 0.024 seconds

Development of Subbase Analysis Model Considering Stress Dependency (응력의존성을 고려한 보조기층 해석모델 개발)

  • Kim, Ji Hwan;Kang, Beong Joon;Lee, Jun Hwan;Choi, Jun Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.331-338
    • /
    • 2008
  • Road pavements consist of layered structure and each layer is made of various materials. The load responses of pavement structures are very sensitive to properties of subbase materials. Successful pavement design, therefore, depends on the method and the accuracy of measuring material properties, and it requires realistic description of the behavior of layered materials. Resilient modulus ($M_R$) is widely used properties representing pavement structure materials. In this study, we collected data for mechanical characteristics of subbase materials that were used in domestic construction and adopted them to form a constitutive equation of subbase $M_R$ value. Proposed model was evaluated through the finite element analysis.

Elastic Wave Propagation in Monoclinic System Due to Transient Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.53-58
    • /
    • 1998
  • In this paper, we study the response of several anisotropic systems to buried transient line loads. The problem is mathematically formulated based on the equations of motion in the constitutive relations. The load is in form of a normal stress acting with arbitrary axis on the plane of monoclinic symmetry. Plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in reference coordinate system, where the line load is coincident with symmetry axis of the orthotrioic material. Then the equation of motion is transformed with respect to general coordiante system with azimuthal angle by using transformation tensor. The load is first described as a body force in the equations of the motion for the infinite media and then it is mathematically characterized. Subsequently the results for semi-infinite spaces is also obtained by using superposition of the infinite medium solution together with a scattered solution from the free surface. Consequently explicit solutions for the displacements are obtained by using Cargniard-DeHoop contour. Numerical results which are drawn from concrete examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

The Least-Squares Meshfree Method for the Analysis of Rigid-Plastic Deformation (강소성 변형 해석을 위한 최소 제곱 무요소법)

  • 윤성기;권기찬
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.2019-2031
    • /
    • 2004
  • The least-squares formulation for rigid-plasticity based on J$_2$-flow rule and infinitesimal theory and its meshfree implementation using moving least-squares approximation are proposed. In the least-squares formulation the squared residuals of the constitutive and equilibrium equations are minimized. Those residuals are represented in a form of first-order differential system using the velocity and stress components as independent variables. For the enforcement of the boundary and frictional contact conditions, penalty scheme is employed. Also the reshaping of nodal supports is introduced to avoid the difficulties due to the severe local deformation near the contact interface. The proposed least-squares meshfree method does not require any structure of extrinsic cells during the whole process of analysis. Through some numerical examples of metal forming processes, the validity and effectiveness of the method are investigated.

A fracture criterion for high-strength steel structural members containing notch-shape defects

  • Toribio, J.;Ayaso, F.J.
    • Steel and Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.231-242
    • /
    • 2003
  • This paper deals with the formulation and development of fracture criteria for high-strength structural members containing surface damage in the form of notches (i.e., blunt defects). The important role of the yield strength of the material and its strain hardening capacity (evaluated by means of the constitutive law or stress-strain curve) is analysed in depth by considering the fracture performance of notched samples taken from high-strength steels with different levels of cold drawing (the most heavily drawn steel being commercial prestressing steel used in prestressed concrete). The final aim of the paper is to establish fracture-based design criteria for structural members made of steels with distinct yield strength and containing very different kinds of notch-shape surface damage.

A new nonlocal HSDT for analysis of stability of single layer graphene sheet

  • Bouadi, Abed;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.147-162
    • /
    • 2018
  • A new nonlocal higher order shear deformation theory (HSDT) is developed for buckling properties of single graphene sheet. The proposed nonlocal HSDT contains a new displacement field which incorporates undetermined integral terms and contains only two variables. The length scale parameter is considered in the present formulation by employing the nonlocal differential constitutive relations of Eringen. Closed-form solutions for critical buckling forces of the graphene sheets are obtained. Nonlocal elasticity theories are used to bring out the small scale influence on the critical buckling force of graphene sheets. Influences of length scale parameter, length, thickness of the graphene sheets and shear deformation on the critical buckling force have been examined.

Finite element analysis of welding processes (용접공정의 유한요소해석)

  • Choi, Kang-Hyouk;Kim, Ju-Wan;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.465-467
    • /
    • 2004
  • Finite element analysis of welding processes, which entail phase evolution, heat transfer and deformation, is considered in this paper. Attention focuses on numerical implementation of the thermo-elastic-plastic constitutive equation proposed by Leblond et al in consideration of the transformation plasticity. Based upon the multiplicative decomposition of deformation gradient, hyperelastic formulation is employed for efficient numerical integration, and the algorithmic consistent moduli for elastic-plastic deformations including transformation plasticity are obtained in the closed form. The convergence behavior of the present implementation is demonstrated via a couple of numerical examples. Several locking phenomena removed by Solid-shell element.

  • PDF

Design and Fabrication of Piezoceramic Cantilever Type Vibration Sensors (압전세라믹 외팔보형 진동센서의 설계 및 제작)

  • 정이봉;노용래
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.377-386
    • /
    • 1997
  • A cantilever type piezoceramic vibration sensor was developed that could make up for the short-comings of current vibration sensors, such as high price, low sensitivity, and complex structure. For the design, in conjunction with piezoelectric constitutive equations, we derived full analytic response equations of the piezoelectric bimorph sensor to external forces. The external forces were supposed to take the form of either step or sinusoidal force. Based on the results, actual piezoelectric vibration sensors were fabricated and tested for verification of the theoretical results. Further, comparison of the performance of the developed sensor was made with that of a commercially available representative vibration sensor so that quantitative evaluation of its sensitivity could be made. The sensor developed in this work showed excellent sensitivity and thermal stability in addition to the merits of simple structure and low fabrication cost in comparison with conventional mass-loaded piezoelectric sensors.

  • PDF

Nonlinear analysis of service stresses in reinforced concrete sections-closed form solutions

  • Barros, Helena F.M.;Martins, Rogerio A.F.
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.541-555
    • /
    • 2012
  • This paper presents an algorithm for the evaluation of stresses in reinforced concrete sections under service loads. The algorithm is applicable to any section defined by polygonal contours and is based on an analytical integration of the stresses. The nonlinear behaviour of concrete is represented by the parabola-rectangle law used in the Eurocode-2 for the ultimate concrete design. An integrated definition of the strains in concrete and steel is possible by the use of Heaviside functions, similarly to what is done for ultimate section design in Barros et al. (2004). Other constitutive equations for the definition of the stresses in the concrete or steel can be easily incorporated into the code. The examples presented consist in the evaluation of resulting axial load and bending moment in an irregular section and in a section in L shape. The results, for service stresses, can also be plotted in terms of design abacus; a rectangular doubly reinforced section is presented as example.

Vibration of nonlocal perforated nanobeams with general boundary conditions

  • Eltaher, Mohamed A.;Mohamed, Norhan A.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.501-514
    • /
    • 2020
  • This article presents a comprehensive model to investigate a free vibration and resonance frequencies of nanostructure perforated beam element as nano-resonator. Nano-scale size dependency of regular square perforated beam is considered by using nonlocal differential form of Eringen constitutive equation. Equivalent mass, inertia, bending and shear rigidities of perforated beam structure are developed. Kinematic displacement assumptions of both Timoshenko and Euler-Bernoulli are assumed to consider thick and thin beams, respectively. So, this model considers the effect of shear on natural frequencies of perforated nanobeams. Equations of motion for local and nonlocal elastic beam are derived. After that, analytical solutions of frequency equations are deduced as function of nonlocal and perforation parameters. The proposed model is validated and verified with previous works. Parametric studies are performed to illustrate the influence of a long-range atomic interaction, hole perforation size, number of rows of holes and boundary conditions on fundamental frequencies of perforated nanobeams. The proposed model is supportive in designing and production of nanobeam resonator used in nanoelectromechanical systems NEMS.

A Study on the Analysis of Pogo Stability of Liquid Propellant Rocket (액체추진로켓의 포고 안정성 해석에 관한 연구)

  • 장홍석;연정흠;윤성기;정태규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.10-13
    • /
    • 2002
  • Pogo is the instability resulting from the interaction between rocket structure and propulsion system of liquid propellant rocket. The coupling of structure and propulsion system can lead to severe problem in rocket. For the analysis of pogo, a time-invariant linearized mathematical model is developed for a selected flight time. Propulsion system is modeled using element representations for each components. The constitutive equation of propulsion system is a homogeneous second-order equation form in the Laplace domain. Rocket structure is modeled using FEM. From the results of modal analysis of structure, the behavior of structure can be represented. System equations for coupling structure and propulsion system are composed of all propulsion system equations and vehicle motion equations reacting on the vehicle by each component of propulsion system. The stability is obtained by the eigen solution of system matrix. The optimization of the design variables such as size, place of accumulator for suppressing pogo instability is carried out. This article of study can be used to determine the degree of stability, and guide the design of pogo suppression system.

  • PDF