• Title/Summary/Keyword: constellation methods

Search Result 44, Processing Time 0.018 seconds

A Study on Effective Satellite Selection Method for Multi-Constellation GNSS

  • Taek Geun, Lee;Yu Dam, Lee;Hyung Keun, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • In this paper, we propose an efficient satellite selection method for multi-constellation GNSS. The number of visible satellites has increased dramatically recently due to multi-constellation GNSS. By the increased availability, the overall GNSS performance can be improved. Whereas, due to the increase of the number of visible satellites, the computational burden in implementing advanced processing such as integer ambiguity resolution and fault detection can be increased considerably. As widely known, the optimal satellite selection method requires very large computational burden and its real-time implementation is practically impossible. To reduce computational burden, several sub-optimal but efficient satellite selection methods have been proposed recently. However, these methods are prone to the local optimum problem and do not fully utilize the information redundancy between different constellation systems. To solve this problem, the proposed method utilizes the inter-system biases and geometric assignments. As a result, the proposed method can be implemented in real-time, avoids the local optimum problem, and does not exclude any single-satellite constellation. The performance of the proposed method is compared with the optimal method and two popular sub-optimal methods by a simulation and an experiment.

Optimum Design of an SAR Satellite Constellation Considering the Revisit Time Using a Genetic Algorithm

  • Kim, Yunjoong;Kim, Mingu;Han, Bumku;Kim, Youdan;Shin, Hohyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.334-343
    • /
    • 2017
  • The optimum design of an SAR (Synthetic Aperture Radar) satellite constellation is developed herein using a genetic algorithm. The performance of Earth observations using a satellite constellation can be improved by minimizing the maximum revisit time. Classical orbit design using analytic methods has limitations when addressing orbit dynamics due to various disturbances. To overcome this issue, an optimization technique based on a genetic algorithm is used. STK (Systems Tool Kit) is utilized to propagate the satellite orbit when considering external disturbances, and the maximum revisit time on the earth observation area is calculated. By minimizing the performance index using a genetic algorithm, the optimum orbit of the satellite constellation is designed. Numerical results are provided to demonstrate the performance of the proposed method.

A New Constellation Method and Its Performance Analysis (새로운 신호점 배치방법 및 이의 성능 분석)

  • Kim Yong-Hwan;Jang Tae-Jeong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.259-264
    • /
    • 2006
  • Using M-ary QAM and PSK, various modulation methods are researched so far. In this paper, a new constellation method of $4L^2$-PSK that normalized circular multi-layer method is proposed with the advantage of those modulation methods. These replacements of signal points complement weak points of an nonlinear radius increment as a layer increases in M-ary QAM and a low efficiency in PSK compared with QAM. But, $4L^2$-PSK have some problems that in the power efficiency and difference of BER in each layer, So in this paper suggest that advanced $4L^2$-PSK also.

  • PDF

A Novel Active User Identification Method for Space based Constellation Network

  • Kenan, Zhang;Xingqian, Li;Kai, Ding;Li, Li
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.212-216
    • /
    • 2022
  • Space based constellation network is a kind of ad hoc network in which users are self-organized without center node. In space based constellation network, users are allowed to enter or leave the network at any given time. Thus, the number of active users is an unknown and time-varying parameter, and the performance of the network depends on how accurately this parameter is estimated. The so-called problem of active user identification, which consists of determining the number and identities of users transmitting in space based constellation network is discussed and a novel active user identification method is proposed in this paper. Active user identification code generated by transmitter address code and receiver address code is used to spread spectrum. Subspace-based method is used to process received signal and judgment model is established to identify active users according to the processing results. The proposed method is simulated under AWGN channel, Rician channel and Rayleigh channel respectively. Numerical results indicate that the proposed method obtains at least 1.16dB Eb/N0 gains compared with reference methods when miss alarm rate reaches 10-3.

Design of Micro-Satellite Constellation for Reconnaissance of Korean Peninsula (한반도 감시·정찰을 위한 초소형 위성군 설계)

  • Shin, Jinyoung;Hwang, Youngmin;Park, Sang-Young;Jeon, Soobin;Lee, Eunji;Song, Sung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.401-412
    • /
    • 2022
  • In this study, we investigated the design methods of satellite constellations to conduct near-real-time surveillance reconnaissance of the Korean Peninsula. Also, we designed satellite constellations utilizing the Walker-Delta method and repeat-ground-track method, and taking into account the target area and the feasible number of satellites. The constrains of the Electro-Optical and Synthetic Aperture Radar equipment were also considered in performance analysis. As a result, the designed constellation has mean revisit time of less than 30 min which enables near-real-time surveillance reconnaissance of the Korean Peninsula. This research provides the strategy to design the satellite constellation for reconnaissance. Furthermore, it contributes to suggesting an operating strategy for micro-satellites constellation and guidelines for establishing space force.

A Maximum A Posterior Probability based Multiuser Detection Method in Space based Constellation Network

  • Kenan, Zhang;Xingqian, Li;Kai, Ding;Li, Li
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.51-56
    • /
    • 2022
  • In space based constellation network, users are allowed to enter or leave the network arbitrarily. Hence, the number, identities and transmitted data of active users vary with time and have considerable impacts on the receiver's performance. The so-called problem of multiuser detection means identifying the identity of each active user and detecting the data transmitted by each active user. Traditional methods assume that the number of active users is equal to the maximum number of users that the network can hold. The model of traditional methods are simple and the performance are suboptimal. In this paper a Maximum A Posteriori Probability (MAP) based multiuser detection method is proposed. The proposed method models the activity state of users as Markov chain and transforms multiuser detection into searching optimal path in grid map with BCJR algorithm. Simulation results indicate that the proposed method obtains 2.6dB and 1dB Eb/N0 gains respectively when activity detection error rate and symbol error rate reach 10-3, comparing with reference methods.

$4L^2$-APSK Constellation Method and Its Error Probability Analysis ($4L^2$-APSK 신호점 배치 방법 및 이의 오율 분석)

  • Nam, Young-Woo;Kim, Yong-Hwan;Jang, Tae-Jeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.210-218
    • /
    • 2010
  • In order to improve the efficiency of frequency bandwidth, various modulation methods such as QAM and PSK have been widely used, and their variation APSK(Amplitude Phase Shift Keying) type modulation methods were proposed and are being used in some satellite communication systems. In this paper, a new constellation method named as $4L^2$-APSK is proposed, which places symbol points circularly as the existing APSK constellations do, but has different number of points and different distance between adjacent points on each layer. An equation for error probability in AWGN channel is also induced for $4L^2$-APSK. In addition, a new Gaussian noise channel is proposed in which noise variances are in the amplitude and in the phase and the two are not equal, and a method of obtaining error probabilities in this channel is also suggested. The equations for error probabilities are verified by computer simulations, and error probabilities of $4L^2$-APSK and QAM are analyzed and compared in the AWGN channel and the proposed noise channel, respectively.

Bandwidth-efficient Cooperative Diversity with Rotated Constellations and Its Performance Analysis

  • Lei, Weijia;Xie, Xianzhong;Li, Xiangming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.989-1005
    • /
    • 2010
  • Cooperative diversity is a technique with which a virtual multiple antenna array is established among the single antenna users of the wireless network to realize space diversity. Signal space diversity (SSD) is a bandwidth-efficient diversity technique, which uses constellation rotation and interleaving techniques to achieve diversity gain. A new cooperative diversity scheme with rotated constellations (RCCD) is proposed in this paper. In this scheme, data are modulated by using a rotated constellation, and the source and the relays transmit different components of the modulated symbols. Since any one of the components contains full information of the symbols, the destination can obtain multiple signals conveying the same information from different users. In this way, space diversity is achieved. The RCCD scheme inherits the advantage of SSD - being bandwidth-efficient but without the delay problem of SSD brought by interleaving. The symbol error rate of the RCCD scheme is analyzed and simulated. The analysis and simulation results show that the RCCD scheme can achieve full diversity order of two when the inter-user channel is good enough, and, with the same bandwidth efficiency, has a better performance than amplify-and-forward and detect-and-forward methods.

An Efficient Constellation Rearrangement for HARQ with 64QAM (64QAM 변조 방식의 HARQ 전송을 위한 효율적인 성상 재배열 방법)

  • Park, Won-Seok;Cho, Chung-Ki;Kim, Jong-Hwan;Kim, Sang-Hyo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.6
    • /
    • pp.14-21
    • /
    • 2011
  • In this paper, we propose an efficient symbol mapping method based on LLR (log-likelihood ratio) statistic for HARQ employing CoRe (constellation rearrangement) with 64QAM. The signal constellations for 64QAM with limited number of retransmissions are selected by the proposed mapping rule. Then we determine the transmission order of selected constellations. The proposed scheme reduces the performance deviation between transmit symbols so as to improve the system performance. Through simulation results, the proposed and existing CoRe mapping methods are compared with respect to error rate and throughput in MIMO-OFDM system over fading channel and we confirm the applicability of the proposed scheme in practical wireless communications environment.

A low-complexity PAPR reduction SLM scheme for STBC MIMO-OFDM systems based on constellation extension

  • Li, Guang;Li, Tianyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2908-2924
    • /
    • 2019
  • Multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) is widely applied in wireless communication by virtue of its excellent properties in data transmission rate and transmission accuracy. However, as a major drawback of MIMO-OFDM systems, the high peak-to-average power ratio (PAPR) complicates the design of the power amplifier at the receiver end. Some available PAPR reduction methods such as selective mapping (SLM) suffer from high computational complexity. In this paper, a low-complexity SLM method based on active constellation extension (ACE) and joint space-time selective mapping (AST-SLM) for reducing PAPR in Alamouti STBC MIMO-OFDM systems is proposed. In SLM scheme, two IFFT operations are required for obtaining each transmission sequence pair, and the selected phase vector is transmitted as side information(SI). However, in the proposed AST-SLM method, only a few IFFT operations are required for generating all the transmission sequence pairs. The complexity of AST-SLM is at least 86% less than SLM. In addition, the SI needed in AST-SLM is at least 92.1% less than SLM by using the presented blind detection scheme to estimate SI. We show, analytically and with simulations, that AST-SLM can achieve significant performance of PAPR reduction and close performance of bit error rate (BER) compared to SLM scheme.