• Title/Summary/Keyword: constellation

Search Result 504, Processing Time 0.022 seconds

A PAPR Reduction Method Using the ACE(Active Constellation Extension) in the OFDM Communication System (OFDM 통신 시스템에서 능동 성상도 확장을 이용한 PAPR 감소 기법)

  • Kang Byoung-Moo;Kim Sang-Woo;Ryu Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.586-593
    • /
    • 2005
  • It is very important to reduce the PAPR(Peak to Average Power Ratio) in the OFDM(Orthogonal Frequency Division Multiplexing) communication system. We propose an ACE(Active Constellation Extension) method that does not require the side information unlike the conventional PTS and SLM method. This ACE method is to clip the OFDM signal for the PAPR reduction. Then, the basic constellation actively moves into the higher level of M-QAM for the constellation extension due to the clipping. The already existing M-QAM system can be available so that it can be easily realized. So, we can get the target PAPR by the extension of the constellation level. In this paper, we can find the PAPR reduction of 4 dB by the 16-QAM extension, and can achieve the target PAPR by the 64-QAM ACE(Active Constellation Extension).

Low-Earth orbit satellite constellation for ADS-B based in-flight aircraft tracking

  • Nguyen, Thien H.;Tsafnat, Naomi;Cetin, Ediz;Osborne, Barnaby;Dixon, Thomas F.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.95-108
    • /
    • 2015
  • Automatic Dependent Surveillance Broadcast (ADS-B) is quickly being adopted by aviation safety authorities around the world as the standard for aircraft tracking. The technology provides the opportunity for live tracking of aircraft positions within range of an ADS-B receiver stations. Currently these receiver stations are bound by land and local infrastructural constraints. As such there is little to no coverage over oceans and poles, over which many commercial flights routinely travel. A low cost space based ADS-B receiving system is proposed as a constellation of small satellites. The possibility for a link between aircraft and satellite is dependent primarily on proximity. Calculating the likelihood of a link between two moving targets when considering with the non-periodic and non-uniform nature of actual aircraft flight-paths is non-trivial. This analysis of the link likelihood and the performance of the tracking ability of the satellite constellation has been carried out by a direct simulation of satellites and aircraft. Parameters defining the constellation (satellite numbers, orbit size and shape, orbit configuration) were varied between reasonable limits. The recent MH370 disappearance was simulated and potential tracking and coverage was analysed using an example constellation. The trend of more satellites at a higher altitude inclined at 60 degrees was found to be the optimal solution.

Performance of a 3-Dimensional Signal Transmission System (3차원 신호 전송시스템의 성능)

  • Kwon, Hyeock Chan;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2021-2026
    • /
    • 2016
  • In this paper, a system model for transmission of 3-dimensional (3-D) signals is presented and its performance is analyzed. Unlike 2-D signals, no quadrature form expression for the 3-D signals is available. Exploiting a set of orthogonal basis functions, the 3-D signals are transmitted. As a result of computer simulation using very higher-level signal constellations, the 3-D transmission system has significantly improved error performance as compared with the 2-D system. It is considered that the principal reason for such performance improvement is much increased minimum Euclidean distance (MED) of the 3-D lattice constellations compared with the corresponding 2-D ones. When the MEDs of 2-D and 3-D lattice constellation are compared to confirm the analysis, the MED of 3-D 1024-ary constellation is around 2.6 times larger than that of the quadrature amplitude modulation (QAM). Expanding the constellation size to 4096, the MED of 3-D lattice constellation is increased by 3.2 times of the QAM.

A New Design of Signal Constellation of the Spiral Quadrature Amplitude Modulation (나선 직교진폭변조 신호성상도의 새로운 설계)

  • Li, Shuang;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.398-404
    • /
    • 2020
  • In this paper, we propose a new design method of signal constellation of the spiral quadrature amplitude modulation (QAM) exploiting a modified gradient descent search algorithm and its binary mapping rule. Unlike the conventional method, the new method, which uses and the constellation optimization algorithm and the maximum number of iterations as a parameter for the iterative design, is more robust to phase noise. And the proposed binary mapping rule significantly reduces the average Hamming distance of the spiral constellation. As a result, the proposed spiral QAM constellation has much improved error performance compared to the conventional ones even in a very severe phase noise environment. It is, therefore, considered that the proposed QAM may be a useful modulation format for coherent optical communication systems and orthogonal frequency division multiplexing (OFDM) systems.

Future Direction of Mission Operation System for Satellite Constellation and the Automation Priority Evaluation (군집위성 임무운영시스템 발전방향 및 자동화 우선순위 평가)

  • Jung, Insik;Yoon, Jeonghun;Lee, Myungshin;Lee, Junghyun;Kwon, Kybeom
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.10-22
    • /
    • 2022
  • According to the Space Development Promotion Basic Plan, more than 110 satellites are expected to be deployed by 2031. Accordingly, the operation concept and technology for satellites constellation are required, compared to the existing few multi-satellite operations. It is essential to automate and optimize the mission operation system, for efficient operation of the satellite constellation, and preparations are urgently needed for the operation of satellite constellation in domestic as well. In this study, the development direction and strategy of the mission operation system applying automation and optimization for efficient operation of the satellite constellation are proposed. The framework for evaluating the automation level and priority of the mission operation system was developed, to identify the tasks to which automation should be applied preferentially.

Iconographic Interpretation of 1569 Tejaprabha Buddha Painting in the Korai Museum of Kyoto Japan (일본 고려미술관(高麗美術館) 소장 1569년 작 <치성광여래강림도>의 도상해석학적 고찰)

  • Kim, Hyeon-jeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.70-95
    • /
    • 2013
  • The Tejaprabha Buddha painting, located in the Korai Museum in Kyoto, Japan, was made in 1569 when Joseon Dynasty was in his $14^{th}$ year under SeonJo's ruling, and is only one of Tejaprabha Buddha paintings from the early Chosun dynasty. With its well preserved state, the painting allows clear indications of all icons and list of names that were written, and the record region also has minimal deterioration. This Buddhist painting is a GumSeonMyoHwa which is drawn with gold lining on red hemp cloth and has a relatively small dimension of $84.8{\times}66.1cm$. With the Tejaprabha Buddha in the center, the painting has two unidentified Bodhisattvas, Navagrabha, Rahu, Keto, YiSipPalSoo (28 constellation of the eastern philosophy), SipYiGoong (12 zodiacs of the western philosophy), SamDaeYookSung, and BookDooChilSung (the Big Dipper), all of which provide resourceful materials for constellation worshipin the Joseon era. This painting has a crucial representation of the overall Tejaprabha Buddhism - a type of constellation worships - from the early Joseon dynasty. Even though the composition does seem to be affiliated with the paintings from the Koryo dynasty, there are meaningful transformations that reflect changes in content into constellation worship in Joseon dynasty. As a part of the Tejaprabha Buddha, SipIlYo has become a center of the painting, but with reduced guidance and off-centered 'Weolpe (star)', the painting deteriorates the concept of SipIlYo's composition. Furthermore, addition of Taoistic constellation beliefs, such as JaMiSung (The purple Tenuity Emperor of the North Pole), OkHwangDaeChae, and CheonHwangJae, eliminates the clear distinction between Taoistic and Buddhist constellation worships. Unlike the Chinese Tejaprabha Buddha painting, the concept of YiSipPalSoo (28 constellation of eastern philosophy) in this painting clearly reflects Korean CheonMoonDo's approach to constellation which can be applied to its uniqueness of the constellation worships. The fact that the Big Dipper and ChilWonSungKoon (Buddha of the Root Destiny Stars of the Northern and central Dipper) are simultaneously drawn can also be interpreted as the increase in importance of the constellation worship at the time as well.

A Variable Modulus Algorithm using Sigmoid Nonlinearity with Variable Variance (가변 분산을 갖는 시그모이드 비선형성을 이용한 가변 모듈러스 알고리즘)

  • Kim Chul-Min;Choi Ik-Hyun;Oh Kil-Nam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.649-653
    • /
    • 2005
  • To estimate for an error signal with sigmoid nonlinearity what reduced constellation applies closed eye pattern in the initial equalization, there can be improves problems of previous soft decision-directed algorithm that increasing estimate complexity and decreasing of convergence speed when substitute high-order constellation. The characteristic of sigmoid function is adjusted by a mean and a variance parameter, so it depends on adjustment of variance that what reduced constellation $values(\gamma)$ can have ranges between + $\gamma$ and - $\gamma$. In this paper, we proposed Variable Modulus Algorithm (VMA) that can be improving a performance of steady-state by adjustment of variance when equalization works normally and each cluster of constellation decrease.

  • PDF

Adaptive Blind Equalization Controlled by Linearly Combining CME and Non-CME Errors (CME 오차와 non-CME 오차의 선형 결합에 의해 제어되는 적응 블라인드 등화)

  • Oh, Kil Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.3-8
    • /
    • 2015
  • In this paper, we propose a blind equalization algorithm based on the error signal linearly combined a constellation-matched error (CME) and a non-constellation-matched error (non-CME). The new error signal was designed to include the non-CME term for reaching initial convergence and the CME term for improving intersymbol interference (ISI) performance of output signals, and it controls the error terms through a combining factor. By controlling the error terms, it generates an appropriate error signal for equalization process and improves convergence speed and ISI cancellation performance compared to those of conventional algorithms. In the simulation for 64-QAM and 256-QAM signals under the multipath channel and additive noise conditions, the proposed method was superior to CMA and CMA+DD concurrent equalization.

Design and Performance Evaluation of DAPSK System Using Efficient Constellation Assignment (효율적 성좌도 배치법을 사용하는 DAPSK 시스템 설계와 성능 평가)

  • An, Changyoung;Ryu, Sang-Burm;Lee, Sang-Gyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.668-676
    • /
    • 2018
  • In satellite communications, a modulation technique with a low peak-to-average power ratio, high transmission efficiency, and low bit error rate(BER) is required, and differential amplitude and phase shift keying(DAPSK) modulation technique has been appraised as a technology that meets these requirements. However, because conventional DAPSK modulation uses a regular constellation diagram, the Euclidean distance between the symbols in the inner concentric circles of the constellation are quite short. Such a characteristic degrades the BER. In this paper, we propose a DAPSK system that uses an efficient constellation assignment to improve the performance of existing DAPSK systems and evaluate the performance of the proposed scheme. From the simulation results, we confirm that the proposed 16-DAPSK system achieves an signal-to-noise ratio gain of 0.8 dB over the conventional approach at a BER condition of $10^{-4}$ when the number of symbols used in the symbol detector of the receiver is 2.

The Performance of Dual Structure CR-CMA Adaptive Equalizer for 16-QAM Signal (16-QAM 신호에 대한 이중 구조 CR-CMA 적응 등화기의 성능)

  • Yoon, Jae-Sun;Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.107-114
    • /
    • 2012
  • In this paper, the concerned existing blind equalizer convergence rate and residual inter-symbol interference using constellation reduced and cost function by separation the real part and an imaginary part, the dual structure CR-CMA(constellation Reduction CMA). The CMA methed compensates amplitude but does no compensate phase, On the other hand, The CMA method compensates both the amplitude and the phase but it has the convergence rate problem, and the MCMA method is a way to solve the phase problem of CMA method compensates both the amplitude and the phase after respectively calculating the real part and imaginary part components. Proposal a new method that the dual structure of CR-CMA, the cost function and error function and respectively calculating the real part and imaginary part components can advantages by improving the CMA and the MCMA algorithms so that the amplitude and phase retrieval and constellation reduce the residual ISI and faster convergence rate and performance is good SER (Symbol Error Ratio) was confirmed by computer simulations.