• Title/Summary/Keyword: constant width

Search Result 626, Processing Time 0.023 seconds

A Study on Synchronized AC Source Voltage Regulator of Voltage Fed Inverter using a Photovoltatic Effect

  • Hwang, Lak-Hoon;Lee, Chun-Sang;Kim, Jong-Lae;Jang, Byong-Gon
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.547-553
    • /
    • 1998
  • In this paper, we composed of utility interactive pv generation system of voltage source inverter, and represented uninterrutible power supply (UPS) equipment maintaining constant voltage, using a pulse width modulation(PWM) voltage fed inverter, as power source disconnection, voltage variation and output current variation with load variation. This system is driven by being synchronized voltage fed inverter and AC source, and in the steady state of power source charge battery connected to dc side with solar cell using a photovoltaic (PV) that it was so called constant voltage charge. In addition, better output waveform was generated because of PWM method, and it was proved to test by experiment maintained constant output voltage regardless of AC source disconnection, load variation, and voltage variation of AC power source.

  • PDF

PARALLEL-RESONANT CONVERTER WITH ZVS-PWM CONTROL

  • Ninomiya, Tamotsu;Hashimoto, Takayoshi;Tanaka, Hidekazu;Syoyama, Masahito;Tymerski, Richard-P.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.85-90
    • /
    • 1998
  • A parallel-resonant converter with zero-voltage-switching, pulse-width-modulation(ZVS-PWM) control is proposed. Similar to the previously proposed series-resonant counterpart, it has a simple structure and can be controlled at a constant switching frequency using an active-clamp technique. The nearly constant current output characteristic of the parallel-resonant converter lends itself beneficially to precisely controlled constant current power supply applications. An experimental breadboard featured an accuracy of $\pm$1% for an output current of 2A, with an efficiency of 75%.

  • PDF

Quantum Nanostructure of InGaAs on Submicron Gratings by Constant Growth Technique

  • Son, Chang-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.1027-1031
    • /
    • 2001
  • A new constant growth technique to conserve an initial grating height of V-groove AlGaAs/InGaAs quantum nanostructures above 1.0 $\mu\textrm{m}$ thickness has been successfully embodied on submicron gratings using low pressure metalorganic chemical vapor deposition. A GaAs buffer prior to an AlGaAs barrier layer on submicron gratings plays an important role in overcoming mass transport effects and improving the uniformity of gratings. Transmission electron microscopy (TEM) image shows that high-density V-groove InGaAs quantum wires (QWRs) are well confined at the bottom of gratings. The photoluminescence (PL) peak of the InGaAs QWRs is observed in the temperature range from 10 to 280 K with a relatively narrow full width at half maximum less than 40 meV at room temperature PL. The constant growth technique is an important step to realize complex optoelectronic devices such as one-step grown distributed feedback lasers and two-dimensional photonic crystal.

  • PDF

A New Control Scheme for a Class-D Inverter with Induction Heating Jar Application by Constant Switching Frequency

  • Choi Won-Suk;Park Nam-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.272-281
    • /
    • 2005
  • In this paper, a simple power control scheme for a constant frequency Class-D inverter with a variable duty cycle is proposed. It is more suitable and acceptable for high- frequency induction heating (IH) jar applications. The proposed control scheme has the advantages of not only wide power regulation range but also ease of control output power. Also it can achieve a stable and efficient Zero-Voltage-Switching (ZVS) in a whole load range. The control principles of the proposed method are described in detail and its validity is verified through simulated and experimental results on 42.8kHz IGBT for induction heating rated on 1.6kW with constant frequency variable power.

Energy Model Based Direct Torque Control of Induction Motor Using IP Controllers

  • Mannan, Mohammad Abdul;Murata, Toshiaki;Tamura, Junji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.405-411
    • /
    • 2012
  • This paper deals with direct torque control of an induction motor (IM) with constant switching frequency. The desired torque is obtained from the speed controller which is designed using the IP controller. Decoupling control of torque and flux is developed based on the energy model of IM using the IP controller strategies. The desired d-axis and q-axis stator voltage components are obtained from the designed controller, which decouples torque and flux. The constant switching frequency can be applied using space-vector pulse width modulation, since the desired stator voltage can be known from the decoupling torque and flux controllers. In order to achieve stable operation of the proposed IP controllers, the gains of the controllers are chosen by setting the poles in negative (left) half of s-plane and by choosing the rising time for the response of the step function. The proposed controller was verified in simulations using Matlab/Simulink and results have proven excellent performance. It was found that the proposed IP controllers can provide excellent performance to track the desired torque and speed and to reject the disturbance of load.

Strain Analysis for Quality Factor oft he Layered Mg0.93Ca0.07TiO3-(Ca0.3Li0.14Sm0.42)TiO3 Ceramics at Microwave Frequencies

  • Cho, Joon-Yeob;Yoon, Ki-Hyun;Kim, Eung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.222-225
    • /
    • 2002
  • Microwave dielectric properties of the layered and functionally graded materials (FGMs) of $Mg_{0.93}Ca_{0.07}TiO_3$ (MCT) and $(Ca_{0.3}Li_{0.14}Sm_{0.42})TiO_3$(CLST) were investigated as a function of the volume ratio of two components. Dielectric constant was decreased with an increase of the volume ratio of MCT which had a lower dielectric constant thant CLST. For the layered FGMs specimens, the difference of thermal expansion coefficients between two components induced thermal strain to dielectric layers, which was confirmed by the plot of ${\Delta}$k (X-ray diffraction peak width0 versus k (scattering vector) using the double-peak Lorentzian function, f(x). Quality factor of the specimens was affected by the thermal strain of dielectric layer, especially MCT layer. For the specimen with the volume ratio of MCT/CLST = 2, the qulaity factor of the specimen showed a minimum value due to the maximum thermal strain fo MCT layer.

In-process Truing of Metal-bonded Diamond Wheels for Electrolytic In-process Dressing (ELID) Grinding

  • Saleh, Tanveer;Biswas, Indraneel;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.3-6
    • /
    • 2008
  • Electrolytic in-process dressing (ELID) grinding is a new technique for achieving a nanoscale surface finish on hard and brittle materials such as optical glass and ceramics. This process applies an electrochemical dressing on the metal-bonded diamond wheels to ensure constant protrusion of sharp cutting grits throughout the grinding cycle. In conventional ELID grinding, a constant source of pulsed DC power is supplied to the ELID cell, but a feedback mechanism is necessary to control the dressing power and obtain better performance. In this study, we propose a new closed-loop wheel dressing technique for grinding wheel truing that addresses the efficient correction of eccentric wheel rotation and the nonuniformity in the grinding wheel profile. The technique relies on an iterative control algorithm for the ELID power supply. An inductive sensor is used to measure the wheel profile based on the gap between the sensor head and wheel edge, and this is used as the feedback signal to control the pulse width of the power supply. We discuss the detailed mathematical design of the control algorithm and provide simulation results that were confirmed experimentally.

Device Design Guideline to Reduce the Threshold Voltage Variation with Fin Width in Junctionless MuGFETs (핀 폭에 따른 문턱전압 변화를 줄이기 위한 무접합 MuGFET 소자설계 가이드라인)

  • Lee, Seung-Min;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.135-141
    • /
    • 2014
  • In this paper, the device design guideline to reduce the threshold voltage variation with fin width in junctionless MuGFET has been suggested. It has been observed that the threshold voltage variation was increased with increase of fin width in junctionless MuGFETs. To reduce the threshold voltage variation with fin width in junctionless MuGFETs, 3-dimensional device simulation with different gate dielectric materials, silicon film thickness, and an optimized fin number has been performed. The simulation results showed that the threshold voltage variation can be reduced by the gate dielectric materials with a high dielectric constant such as $La_2O_3$ and the silicon film with ultra-thin thickness even though the fin width is increased. Particularly, the reduction of the threshold voltage variation and the subthreshold slope by reducing the fin width and increasing the fin numbers is known the optimized device design guideline in junctionless MuGFETs.

Effects of Device Layout On The Performances of N-channel MuGFET (소자 레이아웃이 n-채널 MuGFET의 특성에 미치는 영향)

  • Lee, Sung-Min;Kim, Jin-Young;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • The device performances of n-channel MuGFET with different fin numbers and fin widths but the total effective channel width is constant have been characterized. Two kinds of Pi-gate devices with fin number=16, fin width=55nm, and fin number=14, fin width=80nm have been used in characterization. The threshold voltage, effective electron mobility, threshold voltage roll-off, inverse subthreshold slope, PBTI, hot carrier degradation, and drain breakdown voltage have been characterized. From the measured results, the short channel effects have been reduced for narrow fin width and large fin numbers. PBTI degradation was more significant in devices with large fin number and narrow fin width but hot carrier degradation was similar for both devices. The drain breakdown voltage was higher for devices with narrow fin width and large fin numbers. With considering the short channel effects and device degradation, the devices with narrow fin width and large fin numbers are desirable in the device layout of MuGFETs.

Particle Beam Focusing Using Radiation Pressure (광압을 이용한 입자빔 집속)

  • Kim, Sang-Bok;Park, Hyung-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.110-115
    • /
    • 2005
  • A novel technique for fine particle beam focusing under the atmospheric pressure is introduced using a radiation pressure assisted aerodynamic lens. To introduce the radiation pressure in the aerodynamic focusing system, a 25m plano-convex lens having 2.5mm hole at its center is used as an orifice. The particle beam width is measured for various laser power, particle size, and flow velocity. In addition, the effect of the laser characteristics on the beam focusing is evaluated comparing an optical tweezers type and pure gradient force type. For the pure aerodynamic focusing system, the particle beam width was decreased as increasing particle size and Reynolds number. Using the optical tweezers type, the particle beam width becomes smaller than that of the pure aerodynamic focusing system about $16\%,\;11.4\%\;and\;9.6\%$ for PSL particle size of $2.5{\mu}m,\;1.0{\mu}m,\;and\;0.5{\mu}m$, respectively. Particle beam width was minimized around the laser power of 0.2W. However, as increasing the laser power higher than 0.4W, the particle beam width was increased a little and it approached almost a constant value which is still smaller than that of the pure aerodynamic focusing system. For pure gradient force type, the reduction of the particle beam width was smaller than optical tweezers type but proportional to laser power. The radiation pressure effect on the particle beam width is intensified as Reynolds number decreases or particle size increases relatively.