• Title/Summary/Keyword: constant speed

Search Result 1,891, Processing Time 0.03 seconds

Comparative Analysis of Foot Pressure Distribution by Functional Insole to be Transformed and Restored During Walking (보행 시 변형 및 복원이 가능한 인솔에 대한 족저압력 비교 분석)

  • Park, Seung-Bum;Lee, Kyung-Deuk;Kim, Dae-Woong;Yoo, Jung-Hyeon;Kim, Kyung-Hun
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.231-241
    • /
    • 2011
  • The purpose of this study was to analyze the distribution of foot pressure generated by active materials of a functional insole. Comfort is an important consideration while selectingfootwear and insoles. Consequently, it has an influence on injury. The development of new materials for functional insoles is considered one of the more important points for their manufacture. The method adopted in this study is as follows. First, ten healthy males were selected as subjects for the study. Each subject's foof was pre-screened podoscope(Alfoots, Korea) to check for the presence of any foot abnormalities, Two kinds of equipment were used for the study: a foot pressure device from Pedar-X, Germany, and a treadmill from Pulsefitness, UK. Next, each subject was asked to test four types of insoles(insoles of outdoor shoes, indoor shoes, walking shoes, and sports shoes) via walking trials on the treadmill at a constant speed of 4.2 km/h. The pressure distribution data(contact area, maximum force, maximum peak pressure, and maximum mean pressure) was collected using the pressure device at a sampling rate of 100 Hz. Results of the tests showed that all four types of functional insoles increased contact areas whit the foot. Further, functional insoles of walking shoes and sport shoes decreased the foot pressure. From these results, we conclude that the active materials of functional insoles of shoes can increase the contact area and provide greater comfort.

An Assessment of Air Quality Using Statistical Analysis in Gwangju Area (통계분석을 이용한 광주지역 대기오염도)

  • Seo Gwang Yeob;Paik Ke Jin;Shin Dae Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.417-426
    • /
    • 2004
  • We investigate changing characteristics and concentration distribution of ambient air quality using data from which obtained local ambient air monitoring network and local meterological measuring sites in Gwangju area from January to December in 2003. Sulfur dioxide ($SO_2$) showed that increase from 8 AM and decrease in 6 PM but, it was not drastically changed concentration. it also 0.010 ppm in 1995 from at this time it's decrease step by step and than some constant in year 2001 to 2003. Nitrogen dioxide ($NO_2$) concentration was showed highest peak in 10 AM and increase again at 6 PM. And also it showed peak concentration (0.026 ppm) in 2001 and decreased from after that times. Ozone was showed peak concentration in 1 PM and Nitrogen dioxide was ditto in 10 AM from this data, we can conclude that this two article ws showed chemical reaction by 3 to 5 hours. There was no case of Ozone alarm in Gwangju area since 1995, but it showed highest ozone concentration (over 0.070 ppm) in May and June of the year and 2 to 4 PM of the day and sometimes it showed increase at the dawn. Ozone product optimum condition was that air temperature is over $25^{\circ}C$, no rain and increase solar radiation (over $20MJ/m^2$) and no wind or below 2.0 m/s wind speed.

Association Analysis of Convolution Layer, Kernel and Accuracy in CNN (CNN의 컨볼루션 레이어, 커널과 정확도의 연관관계 분석)

  • Kong, Jun-Bea;Jang, Min-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1153-1160
    • /
    • 2019
  • In this paper, we experimented to find out how the number of convolution layers, the size, and the number of kernels affect the CNN. In addition, the general CNN was also tested for analysis and compared with the CNN used in the experiment. The neural networks used for the analysis are based on CNN, and each experimental model is experimented with the number of layers, the size, and the number of kernels at a constant value. All experiments were conducted using two layers of fully connected layers as a fixed. All other variables were tested with the same value. As the result of the analysis, when the number of layers is small, the data variance value is small regardless of the size and number of kernels, showing a solid accuracy. As the number of layers increases, the accuracy increases, but from above a certain number, the accuracy decreases, and the variance value also increases, resulting in a large accuracy deviation. The number of kernels had a greater effect on learning speed than other variables.

Rotor Failures Diagnosis of Squirrel Cage Induction Motors with Different Supplying Sources

  • Menacer, Arezki;Champenois, Gerard;Nait Said, Mohamed Said;Benakcha, Abdelhamid;Moreau, Sandrine;Hassaine, Said
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The growing application and the numerous qualities of induction motors (1M) in industrial processes that require high security and reliability levels has led to the development of multiple methods for early fault detection. However, various faults can occur, such as stator short-circuits and rotor failures. Traditionally the diagnosis machine is done through a sinusoidal power supply, in the present paper we study experimentally the effects of the rotor failures, such as broken rotor bars in function of the ac supplying, the load and show the impact of the converter from diagnosis of the machine. The technique diagnosis used is based on the spectral analysis of stator currents or stator voltages respectively according to the types of induction motor ac supplying. So, four different ac supplying are considered: ${\odot}$ the IM is directly by the balanced three-phase network voltage source, ${\odot}$ the IM is fed by a sinusoidal current source given the controlled by hysteresis, ${\odot}$ the IM is fed (in open loop) by a scalar control imposing through ratio V/f=constant, ${\odot}$ the IM is controlled through a vector control using space vector pulse width modulation (SVPWM) technique inverter with an outer speed loop.

The Intelligent Traffic Information Searching System Based on Disaster Occurrence of Multipoint (다지점의 재해발생을 고려한 지능형 교통정보 검색 시스템)

  • Kwon, Won-Seok;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.933-939
    • /
    • 2011
  • Recent heavy rains have caused natural disasters such as flooding and landslides nationwide. Because of flooding occurrence in most of the roads, traffic congestion and isolation caused many loss especially at rush hour. Constant monitoring and analysis of past disaster history data are needed to prevent disasters on areas prone to floods and disaster risk areas. If we managed to obtain traffic volume, speed, phase around intersection using disaster history data when disasters occurred, we can analyse traffic congestion, change of disaster scale and rainfall. In this study, We select a target district to develop by using a route from Dae-nam intersection in Busan Namgu Daeyoeon-dong, over Gwangan large bridge up until Haeundae Olympic intersection, We developed a system which searches disaster history information, traffic volume using disaster history data based on user selection of the road.

Numerical Analysis on Plasma Particles inside Electro-magnetic Field Using Particle-in-cell Method (Particle-in-cell 기법을 이용한 전자기장내 플라즈마 입자의 거동 해석)

  • Han, Doo-Hee;Joe, Min-Kyung;Shin, Junsu;Sung, Hong-Gye;Kim, Su-Kyum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.932-938
    • /
    • 2017
  • Particle-in-cell method which blends Eulerian grids and Lagrangian particle is utilized to solve simplified hall-effect thruster. Since this study individually tracks not only neutrons and ions but also electrons, message passing interface(mpi) scheme is adopted for parallel computer cluster. Helical movement of an electron cloud in constant magnetic field is validated comparing with an exact solution. A plasma in radial magnetic field and axial electric field in a reaction cylinder is established. Electrons do double helix movement and are well anchored in a cylinder. Ionization of neutrons by impact with high-speed electrons generates ion particles. They are accelerated by axial electric field, which forms a plume of a plasma-effect thruster.

A study on performance and smoke emission characteristics by blending low purity methanol in a DI diesel engine with the EGR rates of 0, 12.8 and 16.5%

  • Syaiful, Syaiful;Bae, Myung-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.701-710
    • /
    • 2013
  • The purpose of this study is to investigate experimentally the effect of low purity methanol (LPM) on performance and smoke emission characteristics by using a four-cycle, four-cylinder, water-cooled, direct injection diesel engine with EGR system. The experiments are performed by the change of engine load in the engine load ranges of 25 to 100% with an interval of 25% under the constant engine speed of 2000 rpm. The LPM in the fuel blends contained 24.88% water by volume. The blended fuel ratios of diesel oil to LPM are maintained at 100/0, 95/5, 90/10 and 85/15% on the volume basis. In this paper, EGR rates are varied in three conditions of 0, 12.8 and 16.5%. The result shows that the brake power of a blended fuel with 15% LPM is reduced more 11.1% than that of the neat diesel oil at the full load with the EGR rate of 16.5%. At this condition, also, the brake specific fuel consumption (BSFC) is increased by 3.2%, the exhaust gas temperature is decreased by 10.7%, the smoke opacity is decreased by 18.7% and the brake thermal efficiency is increased by 7.3%. The sharp reduction of smoke opacity for a blended fuel with the LPM content of 15% at the full load without EGR system is observed by 68.4% compared with that of the neat diesel oil due to the high oxygen content of LPM.

Mathematical Analysis on the Perception of Pavement Markings Using 'Math Field Trip' (수학답사를 통한 도로 노면표시의 인지에 대한 수학적 분석)

  • SUH, Bo Euk
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.3
    • /
    • pp.248-262
    • /
    • 2016
  • The study documents the analysis on characters and symbols shown in the pavement markings in the perspective of mathematics educators. The purpose of this study is to propose a pavement marking method that can enhance readability from the driver's eye position. To this end, this study analyzed the figure of the pavement markings that can be actually recognized by the projective geometry perspective. As a result, it proposed alternatives to the current pavement markings by introducing the concept of the compression ratio. Results of the study are as follows. First, the rule was established to obtain the compression ratio. If the observation of two viewing angles are x and y, then the compression ratio S is ${\sin}y/{\cos}\(\frac{x-y}{2}\)$. Second, we presented two alternatives to the pavement marking method for the displayed information. One is a method for improving the pavement markings in terms of the compression ratio, the other is a method by varying vertical length of the pavement markings while holding its width constant. Based on the outcomes from this study, a mathematical analysis can be further studied for the perception of speed according to the types of pavement marking line.

Nano-scale Friction Properties of SAMs with Different Chain Length and End Groups

  • R.Arvind Singh;Yoon Eui-Sung;Han, Hung-Gu;Kong, Ho-Sung
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.13-16
    • /
    • 2005
  • Friction characteristics at nano-scale of self-assembled monolayers (SAMs) having different chain lengths and end groups were experimentally studied.51 order to understand the effect of the chain length and end group on the nano-scalefriction: (1) two different SAMs of shorter chain lengths with different end groups such as methyl and phenyl groups, and (2)four different kinds of SAMs having long chain lengths (C10) with end groups of fluorine and hydrogen were coated on siliconwafer (100) by dipping method and Chemical Vapour Deposition (CVD) technique. Their nano-scale friction was measuredusing an Atomic Force Microscopy (AFM) in the range of 0-40 nN normal loads. Measurements were conducted at the scanning speed of 2 $mu$m/s for the scan size of 1$mu$m x 1 $mu$m using a contact mode type $Si_3N_4$ tip (NPS 20) that had a nominal spring constant0.58 N/m. All experiments were conducted at anlbient temperature (24 $pm$1$circ$C) and relative humidity (45 $pm$ 5%). Results showedthat the friction force increased with applied normal load for all samples, and that the silicon wafer exhibited highest frictionwhen compared to SAMs. While friction was affected by the inherent adhesion in silicon wafer, it was influenced by the chainlength and end group in the SAMs. It was observed that the nano-friction decreased with the chain length in SAMs. In the caseof monolayers with shorter length, the one with the phenyl group exhibited higher friction owing to the presence of benBenerings that are stiffer in nature. In the case of SAMs with longer chain length, those with fluorine showed friction values relativelyhigher than those of hydrogen. The increase in friction due to the presence of fluorine group has been discussed with respect tothe siBe of the fluorine atom.

Theoretical Performance Prediction Program of Pulse Detonation Engines (펄스 데토네이션 엔진 이론 성능 예측 프로그램)

  • Kim, Tae-Young;Kim, Ji-Hoon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.552-560
    • /
    • 2014
  • Pulse Detonation Engine(PDE) has been investigated as a next generation propulsion system with the advantages of the higher thermal efficiency by the compression effect and the wide operation ranges from zero speed at ground. In the present study, an efficient theoretical PDE performance prediction program was developed for realistic propellants based on the Endo's theory combining the Chapman-Jouguet detonation theory and expansion process of burnt gas in a constant area tube. The program was validated through the comparison with the experimental data obtained by a ballistic pendulum measurement. PDE performance analyses were carried out for various hydrocarbon fuels and oxidizer compositions by changing the mixture equivalence ratio and initial conditions. Theoretical PDE performance database could be established as a result of the analyses.