• Title/Summary/Keyword: constant pressure test

Search Result 393, Processing Time 0.023 seconds

Shear wave velocity of sands subject to large strain triaxial loading

  • Teachavorasinskun, Supot;Pongvithayapanu, Pulpong
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.713-723
    • /
    • 2016
  • Shear wave velocities of three selected sandy soils subject to drained triaxial compression test were continuously measured using the bender elements. The shear wave velocity during isotropic compression, as widely recognized, increased as confining pressure increased and they were correlated well. However, during drained shearing, the mean effective stress could no further provide a suitable correlation. The shear wave velocity during this stage was almost constant with respect to the mean effective stress. The vertical stress was found to be more favorable at this stage (since confining stress was kept constant). When sample was attained its peak stress, the shear wave velocity reduced and deviated from the previously existed trend line. This was probably caused by the non-uniformity induced by the formation of shear band. Subsequently, void ratios computed based on external measurements could not provide reasonable fitting to the initial stage of post-peak shear wave velocity. At very large strain levels after shear band formation, the digital images revealed that sample may internally re-arrange itself to be in a more uniform loose stage. This final stage void ratio estimated based on the proposed correlation derived during pre-peak state was close to the value of the maximum void ratio.

Composite Pressure Vessel for Natural Gas Vehicle by Filament Winding (필라멘트 와인딩 공정에 의한 천연가스 차량용 복합재료 압력용기)

  • 김병선;김병하;김진봉
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.1-6
    • /
    • 2004
  • Composite pressure vessels with HDPE (high density polyethlyne) liner with metal boss at each end were developed by Filament Winding Process. The vessel is composed of a dome-shaped part at each end and a cylinder-shaped part at the middle of the vessel. The environmental tests carried out for possible vessel materials such as High Density Polyethlyn (HDPE), resins and reinforcing fibers up to a year showed no significant damages. The boss was designed to minimize the gas leak which was verified by FEM analysis. Most ideal fiber tension was obtained by experimental method and the fiber volume fraction, $\textrm{V}_{f}$, obtained by image analyzer were 55.4 % in cylinder and 55.6 % in dome parts, respectively. Winding pattern is programmed to control the composite thickness in the dome areas such that the failure of the vessel may occur in the cylinder. During the cure, the vessel was rotated and a constant internal pressure of 0.62 bar was applied. From this, the vessel's burst pressure is improved by 28 %. The burst and fatigue tests for under-wound and fully wound vessel showed satisfactory results.

Effects of Surface Roughness on the Performance of a Gas Foil Thrust Bearing (표면 거칠기가 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.81-85
    • /
    • 2023
  • This study presents an experimental investigation of the effects of surface roughness on gas foil thrust bearing (GFTB) performance. A high-speed motor with the maximum speed of 80 krpm rotates a thrust runner and a pneumatic cylinder applies static loads to the test GFTB. When the motor speed increases and reaches a specific speed at which a hydrodynamic film pressure generated within the gap between the thrust runner and test GFTB is enough to support the applied static load, the thrust runner lifts off from the test GFTB and the friction mechanism changes from the boundary lubrication to the hydrodynamic lubrication. The experiment shows a series of lift-off test and load-carrying capacity test for two thrust runners with different surface roughnesses. For a constant static load of 15 N, thrust runner A with its lower surface roughness exhibits a higher start-up torque but lower lift-off torque than thrust runner B with a higher surface roughness. The load capacity test at a rotor speed of 60 krpm reveals that runner A results in a higher maximum load capacity than runner B. Runner A also shows a lower drag torque, friction coefficient, and bearing temperature than runner B at constant static loads. The results imply that maintaining a consistent surface roughness for a thrust runner may improve its static GFTB performance.

A Study on Performance Characteristics of Second Throat Exhaust Diffuser with Back Pressure (고공환경 모사용 이차목 디퓨저의 배압에 따른 성능 특성)

  • Kim, Wan Chan;Yu, I Sang;Kim, Tae Woan;Park, Jin Soo;Ko, Young Sung;Kim, Min Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.563-570
    • /
    • 2017
  • Experimental and numerical studies were performed to investigate the performance and internal flow characteristics of a supersonic second throat exhaust diffuser (STED) with back pressure ($P_a$). An ejector system was used to vary the back pressure ($P_a$) conditions. The operating gas for the STED and the ejector was high pressure nitrogen at room temperature. When the back pressure ($P_a$) at a constant nozzle inlet pressure $P_0$) decreases, the pressure recovery location moves downstream. If the pressure ratio $P_0/P_a$) is the same, even if the nozzle inlet pressures $P_0$) are different, the diffuser's internal flow pattern and starting pressure ratio ($(P_0/P_a)_{st}$) are almost the same.

A Study on the Pressure Control Process of Gas Regulators through Numerical Analysis (수치해석을 통한 가스 레귤레이터의 압력제어 프로세스 고찰)

  • Jung, Jun-Hwan;Nam, Chung-Woo;Kim, Min-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.37-51
    • /
    • 2021
  • The pressure drop phenomenon that occurs when the same flow rate is supplied to the gas regulator was analyzed. The regulator moves the position of the piston through the interaction of the force acting on the upper and lower parts of the piston and the spring tension to release the pressure of a specific range in a specific environment as constant pressure, thereby maintaining the pressure. The flow characteristics and pressure control process of the regulator were investigated through a numerical analysis technique as the volume of the fluid inside the regulator changed. As the gap between the piston and the piston seat decreased, the pressure drop increased and the flow velocity increased. It was verified through numerical analysis that the piston was positioned at 0.12mm under the same conditions as the pressure-flow test (inlet pressure 3MPa, outlet pressure 0.8MPa, flow rate 70kg/h).

Effect of Extracorporeal Shock Wave Therapy on Pain and Function in Patients with Rotator Cuff Tendinitis (체외충격파치료가 회전근개 건염 환자의 통증 및 기능에 미치는 영향)

  • Seo, Hyung-Seok;Sung, Youn-Bum;Lee, Jung-Ho;Park, Young-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3132-3139
    • /
    • 2012
  • The purpose of this study was to evaluate whether extracorporeal shock wave (ESWT) is an effective treatment for rotator cuff tendinitis. Study subjects included 32 patients (16 in the experimental group and 16 in the control group). The patients were evaluated by assessing pain and function using visual analog scale (VAS), pressure pain threshold (PPT), Constant and Murley Scale (CMS), and simple shoulder test (SST). The results of this study indicated that ESWT after the subjects in the experimental group experienced significant changes in pain, range of motion, muscle strength, and function when compared to the control group. These results indicate that ESWT could be considered as an effective and efficient treatment for rotator cuff tendinitis.

Development f head-neck complex dummy for experimental study (실험적 해석을 위한 머리-목 형태의 더미 개발)

  • Kim, Yeong-Eun;Nam, Dae-Hun;Koh, Chang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1058-1072
    • /
    • 1997
  • A head-neck complex dummy, for measuring brain pressure and reaction force in the cervical spine was developed for experimental study related in injury mechanism. Dummy comprised aluminium-casted head with water filled cavity for simulating brain and mechanical neck assembled with six motion segments. Several kinds of experiments (compression, bending, cyclic modulus, relaxation and constant velocity profile) for the developed mechanical neck showed that this neck model is biomechanically reliable compared with in-vitro test results. As an application of developed head-neck complex dummy, shock absorbing properties of protective helmet was chosen. The experiments showed that the maximum pressure increment of brain after impact was tolerable compared with the guide line for mild brain injury pressure (25psi). Constrast to this results, the reaction force in the neck was high enough to produce failure in the cervical spine.

An Experimental Study of the Air-side Particulate Fouling of Finned-Tube Heat Exchangers of Air Conditioners by using Accelerated Particle-Loading System (파울링 형성 가속장치를 이용한 공기조화기용 열교환기의 공기측 파울링 특성에 대한 실험적 연구)

  • 안영철;조재민;이재근;이현욱;안승표;윤덕현;하삼철;강태욱;옥주호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.802-808
    • /
    • 2003
  • The air-side particulate fouling of the HVAC heat exchangers degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. The purpose of this study is to investigate the fouling characteristics using accelerated particle loading system. The fouling characteristics are analyzed as functions of a dust concentration, a face velocity and a wet or dry surface condition. The pressure drop increases with increasing test operation and reaches constant asymptotic level. For the saturated condition due to particle loading, the pressure drop across the slitted finned-tube heat exchangers at the face velocity of 1 m/sec increases up to 57% and the cooling capacity decreases about 2%. The cooling capacities are not affected greatly by the presence of the fouling deposits if the thickness of the fouling deposits can not change substantially the flow pattern through the fins.

The Changes in the Closed Qutient of Trained Singers and Untrained Controls Under Varying Intensity at a Constant Vocal Pitch (음도 고정 시 강도 변화에 따른 일반인과 성악인 발성의 성대접촉률 변화 특성의 비교)

  • Kim, Han-Su;Jeon, Yong-Sun;Chung, Sung-Min;Cho, Kun-Kyung;Park, Eun-Hee
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.16 no.1
    • /
    • pp.28-32
    • /
    • 2005
  • Background and Objectives : The most important two factors of the voice production are the respiratory function which is the power source of voice and the glottic closure that transform the air flow into sound signals. The purpose of this study was to investigate the differences between trained singers and untrained controls under varying intensity at a constant vocal pitch by simulataneous using the airway interruption method and electroglottography(EGG). Materials and Methods : Under two different intensity condition at a constant vocal pitch(/G/), 20(Male 10, Female 10) trained singers were studied. Mean flow rate(MFR), subglottic pressure(Psub) and intensity were measured with aerodynamic test using the Phonatory function analyzer. Closed quotients(CQ), jitter and shimmer were also investigated by electroglottography using Lx speech studio. These data were compared with that of normal controls. Results : MFR and Psub were increased on high intensity condition in all subject groups but there was no statistically significance. Statistically significant increasing of CQ. were observed in male trained singers on high intensity condition (untrained male : 51.31${\pm}$3.70%, trained male :55.52${\pm}$6.07%, p=.039). Shimmer percent, one of the phonatory stability parameters, was also decreased statistically in all subject groups(p<.001). Conclusion : The trained singers' phonation was more efficient than untrained singers. The result means that the trained singers can increase the loudness with little changing of mean flow rate, subglottic pressure but more increasing of glottic closed quotients.

  • PDF

Three dimensional flow analysis within a profile extrusion die by using control volume finite-element method

  • Kim, Jongman;Youn, Jae-Ryoun;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.2
    • /
    • pp.97-106
    • /
    • 2001
  • Three-dimensional flow analysis was performed by using the control volume finite-element method for design of a profile extrusion die. Because polymer melt behavior is complicated and cross-sectional shape of the profile extrusion die is changing continuously, the fluid flow within the die must be analyzed three-dimensionally. A commercially available polypropylene is used for theoretical and experimental investigations. Material properties are assumed to be constant except for the viscosity. The 5-constant modified Cross model is used for the numerical analysis. A test problem is examined in order to verify the accuracy of the numerical method. Simulations are performed for conditions of three different screw speeds and three different die temperatures. Predicted pressure distribution is compared with the experimental measurements and the results of the previous two-dimensional study. The computational results obtained by using three dimensional CVFEM agree with the experimental measurements and are more accurate than those obtained by using the two-dimensional cross-sectional method. The velocity profiles and the temperature distributions within several cross-sections of the die are given as contour plots.

  • PDF