• Title/Summary/Keyword: constant power

Search Result 2,851, Processing Time 0.031 seconds

Self-Oscillating Flyback Converter for Reducing Standby Power (대기전력 저감을 위한 자려발진 플라이백 컨버터)

  • Yoon, Young-Nam;Jang, Doo-Hee;Roh, Chung-Wook;Han, Sang-Kyoo;Kim, Jong-Duck;Hong, Sung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • This paper presents the self-oscillating flyback converter for reducing standby power without a control-IC. The proposed self-oscillating flyback converter includes a DC-Blocking capacitor for reducing constant power loss of initial switching path of a conventional self-oscillating flyback converter. it's possible to reduce the standby power to 1W and power efficiency. To confirm the validity of proposed system, comparison of conventional system, verification of experimental results is presented by realization of 35W power system.

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

A Novel Variable-Speed Renewable-Energy Generation System of Induction Generator and PWM Converter for Small-Scale Hybrid Power Applications

  • Ahmed, Tarek;Nishida, Katsumi;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1339-1342
    • /
    • 2005
  • This paper presents a simple AC-DC power conditioner for a squirell-cage induction generator(IG) operating under variable shaft speeds. The necessary reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM power converter size. A simple control compensating for changes in the electrical loads as well as the variation in speed was developed to regulate the voltages of the IG system by controlling the rotor flux through its reactive and active currents control implementation. This proposed power conditioning scheme can be used efficiently as a wind power generation system where the output voltage of the IG is maintained constant voltage despite the variable frequency and the DC bus voltage of the PWM converter can be used for either DC applications such as battery charging or AC power applications with 60/50 Hz by connecting a stand alone inverter. The experimental and simulated operating performance results of a 5 kW IG scheme at various speeds and leads are presented.

  • PDF

A Study on the Low Power LDO Having the Characteristics of Superior IR Drop (우수한 IR Drop 특성을 갖는 저전력 LDO에 관한 연구)

  • Lee, Kook-Pyo;Pyo, Chang-Soo;Koh, Si-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1835-1839
    • /
    • 2008
  • Power management is a very important issue in portable electronic applications. Portable electronic devices require very efficient power management like LDO to increase the battery life. As the voltage variation of battery power is large in the application of cell phone, camera, laptop, automotive, industry application and so on, battery power is not directly used and LDO is used to supply the power of internal circuit. Besides, LDO can supply DC voltage that is lower than bauer voltage and constant DC voltage that is not related to largely fluctuated battery power. In the study, the power-save mode current and IR-drop characteristics are analyzed from a LDO with on-chip fabricated in 0.18-um CMOS technology.

Measurement Method for Catenary Line Constant (전차선로의 회로정수 측정방안 연구)

  • 오광해;이한민;이장무;이기원
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.620-627
    • /
    • 2000
  • This paper presents a mettled to obtain line constants for a catenary system. To find them, voltages, currents and power factors according to frequencies were measured in short circuit and open circuit respectively. And front the measured data, resistances, inductances and capacitances were also calculated.

  • PDF

Parameter Study of Impact Characteristics for a Vacuum Interrupter Considering Dynamic Material Properties (동적 물성치를 고려한 진공 인터럽터 충격특성의 영향인자 분석)

  • Lim, Ji-Ho;Song, Jeong-Han;Huh, Hoon;Park, Woo-Jin;Oh, Il-Seong;Ahn, Gil-Young;Choe, Jong-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.924-931
    • /
    • 2002
  • Vacuum interrupters in order to be used in various switch-gear components such as circuit breakers, distribution switches, contactors, etc. spread the arc uniformly over the surface of the contacts. The electrodes of vacuum interrupters are made of sinter-forged Cu-Cr materials for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

A Quasi Z-Source AC-AC Converter with a Low DC Voltage Distribution Capability Operating as a Power Electronic Transformer (전력전자 변압기로 동작하는 저전압 직류배전 기능을 갖는 Quasi Z-소스 AC-AC 컨버터)

  • Yoo, Dae-Hyun;Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.358-366
    • /
    • 2014
  • This paper proposes a quasi Z-source AC-AC converter with the low DC voltage distribution capability operating as a power electronic transformer. The proposed system has configuration that the input terminals of two quasi Z-source AC-AC converters are connected in parallel, also their output terminal are connected in series. Simple control method of duty ratio was proposed for the in phase buck-boost AC voltage mode and the DC output voltage control. DSP based experiment and PSIM simulation were performed. As a result, the PSIM simulation results were same with the measured results. By controlling the duty ratio under the condition of 100 [${\Omega}$] load, quasi Z-source AC-AC converter could buck and boost the AC output voltage in phase with the AC input voltage, and the same time, the constant DC voltage could be output without affecting the AC output characteristics. And, the DC output voltage 48[V] was constantly controlled in dynamic state in case while the load is suddenly changed ($50[\Omega]{\rightarrow}100[\Omega]$). From the above result, we could know that the quasi Z-source AC-AC converter can act as a power electronic transformer with a low DC voltage distribution capability.

CS-PDM Series Resonant High Frequency Inverter for Copy Machine

  • Sugimura, Hisayuki;Eid, Ahmad Mohamad;Hiraki, Eiji;Kim, Sung-Jung;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1066-1071
    • /
    • 2005
  • This paper presents the two lossless auxiliary inductors-assisted voltage source type half bridge (single ended push pull: SEPP) series resonant high frequency inverter for induction heated fixing roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation for wide its output power regulation ranges and load variations under its constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation characteristics-based on the high frequency PDM strategy. The experimental operating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimental ones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliance implemented here is proved from the practical point of view.

  • PDF

An Integrated Power Management Framework for WiFi-based Mobile Embedded Systems (WiFi기반 모바일 임베디드 시스템을 위한 통합 전력 제어 기법)

  • Min Jung-Hi;Cha Ho-Jung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.658-665
    • /
    • 2006
  • In these days, the demand of users to extend available period of mobile systems is increased according as the functions of mobile systems have been varied and the use of multimedia application has been increased. This paper proposes an integrated power management framework that considers executed workload types for effective energy management. The conventional methods use DVFS technique for CPU and DPM technique for WNIC separately or simply combine them based on the assumption that they are orthogonal one another. However, the proposed mechanism determines the kind of workload under analysis of the characteristics of workloads incoming through a WNIC. The proposed method can reduce energy consumption of system level effectively by controlling CPU and WNIC to proper power mode based on analyzed characteristics of workload. The experimental result shows the proposed method reduces energy consumption by 9% for BE (Best Effort) workload, CBR (Constant Bit Rate) workload, and Interactive workload on average and by 16% to maximum when compared with the conventional methods which simply combine DVFS technique for CPU and DPM technique for WNIC.