• Title/Summary/Keyword: constant power

Search Result 2,851, Processing Time 0.026 seconds

A Study on Indoor Propagation Modeling using Patch Scattering Model (패치산란모델을 이용한 실내 전파모델링에 관한 연구)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.772-772
    • /
    • 2001
  • In this paper, we proposed the image-based 3D ray-tracing indoor propagation model using patch scattering model which can calculate the scattering phenomenon of the indoor structures. A patch scattering model for modeling indoor structures defines a scattering phenomenon by using RCS(Radar Cross Section) about rectangular patch without complex calculation, for example generating image antennas about each indoor structures. RCS is simply defined as a ratio of scattering power to incident power, and we use bistatic PCS which is simplified numerically by Physical Optics. Also, a simple indoor compensation factor is defined as empirical constant from measured data instead of complex numerical expression because basic patch scattering model cannot include important multipath components, so we san use patch scattering model in indoor environment using indoor compensation factor.

A Study on Indoor Propagation Modeling using Patch Scattering Model (패치산란모델을 이용한 실내 전파모델링에 관한 연구)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.722-733
    • /
    • 2001
  • In this paper, we proposed the image-based 3D ray-tracing indoor propagation model using patch scattering model which can calculate the scattering phenomenon of the indoor structures. A patch scattering model for modeling indoor structures defines a scattering phenomenon by using RCS(Radar Cross Section) about rectangular patch without complex calculation, for example generating image antennas about each indoor structures. RCS is simply defined as a ratio of scattering power to incident power, and we use bistatic PCS which is simplified numerically by Physical Optics. Also, a simple indoor compensation factor is defined as empirical constant from measured data instead of complex numerical expression because basic patch scattering model cannot include important multipath components, so we san use patch scattering model in indoor environment using indoor compensation factor.

  • PDF

Evaluating long-term relaxation of high strength bolts considering coating on slip faying surface

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.703-718
    • /
    • 2014
  • The initial clamping forces of high strength bolts subjected to different faying surface conditions drop within 500 hours regardless of loading, any other external force or loosening of the nut. This study develops a mathematical model for relaxation confined to creep on a coated faying surface after initial clamping. The quantitative model for estimating relaxation was derived from a regression analysis for the relation between the creep strain of the coated surface and the elapsed time for 744 hours. This study establishes an expected model for estimating the relaxation of bolted joints with diverse coated surfaces. The candidate bolts are dacro-coated tension control bolts, ASTM A490 bolt, and plain tension control bolts. The test parameters were coating thickness, species of coating. As for 96, 128, 168, and $226{\mu}m$ thick inorganic zinc, when the coating thickness was increased, relaxation after the initial clamping rose to a much higher range from 10% to 18% due to creep of the coating. The amount of relaxation up to 7 days exceeded 85% of the entire relaxation. From this result, the equation for creep strain can be derived from a statistical regression analysis. Based on the acquired creep behavior, it is expected that the clamping force reflecting relaxation after the elapse of constant time can be calculated from the initial clamping force. The manufacturer's recommendation of inorganic zinc on faying surface as $75{\mu}m$, appears to be reasonable.

Development of a Low frequency Operating Electronic Ballast for Fish Attracting Lamps (저주파 구동형 집어등용 전자식 안정기 개발)

  • Kil Gyung-suk;Kim Il-kwon;Song Jae-yong;Han Ju-seop;Shin Gwang-chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1052-1058
    • /
    • 2005
  • This paper dealt with the design and fabrication of a low frequency electronic ballast for ruh attracting lamps. The proposed electronic ballast was composed of a full-wave rectifier, a step don converter operated as a constant power controled current source, an inverter operated by 130 Hz square wave, and an ignition circuit. An acoustic resonance phenomenon of discharge lamps could be eliminated by application of 130 Hz square wave. Also, a circuit of high voltage pulse generation for lamp ignition was added to the ballast. From the experimental results, voltage and current of the lamp operated by the electronic ballast were estimated 132.5 V and 7.6 A, respectively. and the power consumption was about 1,000 W. The weight of the ballast, which is one of important advantages, was reduced to one-fifth of conventional magnetic ballasts.

A Study on Nozzle Flow and Spray Characteristics of Piezo Injector for Next Generation High Response Injection (차세대 고응답 분사용 피에조 인젝터의 노즐유동 및 분무특성에 관한 연구)

  • Lee Jin-Wook;Min Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.553-559
    • /
    • 2006
  • Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(volume of fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response In a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

Development of Variable Speed Digital Control System for SRM using Simple Position Detector (간단한 위치검출기를 이용한 SRM 가변속 디지털 제어시스템 개발)

  • 천동진;정도영;이상호;이봉섭;박영록
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.202-208
    • /
    • 2001
  • A Switched Reluctance Motor(SRM) has double salient poles structure and the phase windings are wound in stator. SRM hase more simple structure that of other motor, thus manufacture cost is low, mechanically strong, reliable to a poor environment such as high temperature, and maintenance cost is low because of brushless. SRM needs position detector to get rotator position information for phase excitation and tachometer or encoder for constant speed operation. But, this paper doesn\`s use an encoder of high cost for velocity measurement of rotator. Instead of it, the algorithm for position detection and velocity estimation from simple slotted disk has been proposed and developed. To implement variable speed digital control system with velocity estimation algorithm, the TMS320F240-20MIPS fixed point arithmetic processor of TI corporation is used. The experimental results of the developing system are enable to control speed with wide range, not only single pulse, hard chopping mode and soft chopping, ut also variable speed control, and advance angle control.

  • PDF

The Position Sensorless Control of SRG using the Instantaneous Flux (순시자속을 이용한 위치센서 없는 SRG의 운전)

  • 김영조;오승보;김영석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.472-481
    • /
    • 2002
  • In this paper, the instantaneous flux Is applied to control the position of the SRG (Switched Reluctance Generator) without position sensor. The position information of the rotor is required in the drive of SRG. These data are generally obtained by a shaft encoder or resolver. In some cases, the EMI(Electro Magnetic Interference), vibration, thermal, and humidity environments may cause the difficulties in maintaining the satisfactory performance for the position detection. Therefore, the elimination of the position and speed sensor is needed. In this paper, a new method for the position estimation of the SRG is proposed. The estimation of the flux is calculated by using the measured voltage and current. The rotor position gets from the flux profile. The output voltage is also controlled constantly by PR control algorithm. These methods are verified by computer simulations md experiments using DSP. Experimental results certificate that the proposed method is able to control the SRG stable, and keep the output voltage constant in spite of changing of the load.

The Surface Sidelobe Clutter and the False Alarm Probability of Target Detection for the HPRF Waveform of the Microwave Seeker (마이크로파 탐색기의 HPRF 파형에 대한 지표면 부엽클러터와 표적탐지 오류 확률)

  • Kim, Tae-Hyung;Yi, Jae-Woong;Byun, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.476-483
    • /
    • 2009
  • Tracking and detecting targets by the microwave seeker is affected by the clutter reflecting from the earth's surface. In order to detect retreating targets in look-down scenario, which appear in the sidelobe clutter (SLC) region, in the microwave seeker of high pulse repetition frequency (HPRF) mode, it is necessary to understand statistical characteristics of the surface SLC. Statistical analysis of SLC has been conducted for several kinds of the surface using data obtained by the captive flight test of the microwave seeker in the HPRF mode. The probability density function (PDF) fitting is conducted for several kinds and conditions of the surface. PDFs and PDF parameters, which best describe statistical distribution of the SLC power, are estimated. By using the estimated PDFs and PDF parameters, analyses for setting the target-detection thresholds, which give a desired level of target-detection false alarm probability, are made. These analysis materials for statistical characteristics of SLC power and the target-detection threshold can be used in various fields, such as development of a target-detection method, the constant false alarm rate processing.

The Effect of Graphite and MoS2 on Endurance and Cutting Performance of Diamond Micro Blades (다이아몬드 마이크로블레이드의 내구성과 절삭성능에 미치는 흑연과 MoS2의 첨가효과)

  • Moon, Jong-Chul;Kim, Song-Hee
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.6
    • /
    • pp.335-340
    • /
    • 2008
  • Cutting performance and wear behavior were studied with the diamond micro-blade of Cu/Sn bond materials containing various amount of lubricant materials such as graphite and $MoS_2$. Measurement of instantaneous electric power consumption for cutting glass workpiece at the constant velocity was conducted and proposed as a method to assess cutting efficiency. The energy consumption of micro-blade for glass cutting decreased with the content of graphite and $MoS_2$ while wear amount of blade in volume increased with the amount of lubricant addition during the dicing test. It is because that hardness, flexural strength, and fracture toughness ($K_{IC}$) reduced with the amount of lubricant addition. Blades with $MoS_2$ additive showed higher mechanical properties than those with graphite additives when the same amount of the lubricant additive in wt.% was added. Due to the lower density of graphite than $MoS_2$, higher volume fraction of graphite could result in stronger effect on lowering electric power consumption by reducing the friction between blade and work piece however increasing wear rate due to the reduction in strength and fracture toughness. Adhesive wearing mode of micro blade could be remarkably improved by the addition of graphite as well as $MoS_2$.

Silicon Oil-Based 2-Channel Fiber-Optic Temperature Sensor Using a Subtraction Method (감법을 이용한 실리콘 오일 기반의 2채널 광섬유 온도 센서)

  • Lee, Dong Eun;Yoo, Wook Jae;Shin, Sang Hun;Kim, Mingeon;Song, Young Beom;Kim, Hye Jin;Jang, Kyoung Won;Tack, Gye Rae;Lee, Bongsoo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.344-348
    • /
    • 2016
  • We developed a 2-channel fiber-optic temperature sensor (FOTS) using a temperature sensing probe, a fiber-optic coupler, transmitting optical fiber, and an optical time domain reflectometer (OTDR). The temperature sensing probe is divided into a sensing probe and a reference probe for accurate thermometry. A sensing probe is composed of a silicon oil, a FC terminator, a brass pipe, and a singlemode optical fiber and the structure of a reference probe is identical with that of the sensing probe excluding a silicon oil. In this study, we measured the modified optical powers of the light signals reflected from the temperature sensing probe placed inside of the water with a thermal variation from 5 to $70^{\circ}C$. Although the optical power of the reference probe was constant regardless of the temperature change, the optical power of the sensing probe decreased linearly as the temperature increased. As experimental results, the FOTS using a subtraction method showed a small difference (i.e., hysteresis) in its response due to heating and cooling. The reversibility and reproducibility of the FOTS were also evaluated.