• Title/Summary/Keyword: constant power

Search Result 2,851, Processing Time 0.037 seconds

Feasibility Study of Cylindrically Diffusing 532 nm Wavelength for Treatment of Pancreatic Cancer

  • Park, Jin-Seok;Jeong, Seok;Lee, Don Haeng;Zheng, Hong-Mei;Kang, Hyun Wook;Bak, Jinoh;Choi, Jongman
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1619-1624
    • /
    • 2018
  • Laser ablation may provide a minimally invasive palliative treatment for pancreatic cancer. The aim of the current study was to assess the feasibility of a 532-nm laser equipped with a cylindrical light diffuser for the treatment of pancreatic cancer. Monolayers of BxPC-3 human pancreatic cancer cell were exposed to 532 nm laser light. Power levels of 5 - 7 W were used to uniformly target the entire cell colonies for 60 and 120 seconds. The cells were incubated for 24 hours after treatment and viabilities were determined by using a MTT assay. Laser ablation was performed by using the cylindrical light diffuser on six pancreatic tumor tissues obtained from pancreatic cancer xenograft mouse models, which were exposed to the 532 nm light at 5W or 7W for 10 to 30 seconds. In the in vitro study, the survival rates of the pancreatic cancer cells were reduced by 6.6% to 98.9% after the treatment, and the survival rates were reduced by increasing laser power and/or irradiation time. In the pancreatic tumor tissues, a homogenous circular ablation zone was observed in all tumors and the ablation distance induced by the laser irradiation showed to be constant from the diffuser to all directions (standard deviation, 0.3 - 1.3 mm). Ablation distance and area increased with increasing laser power and/or irradiation time. The 532 nm laser effectively killed pancreatic cancer cells, and the cylindrical light diffuser was found to be suitable for laser ablation as it provided uniform ablation in pancreatic cancer.

Performance Evaluation of a Closed-Loop Pressure Retarded Membrane Distillation for Brackish Water Desalination and Power Generation (기수담수화와 전력 생산을 위한 폐루프형 압력 지연식 막 증류 공정의 성능 평가)

  • Cho, Gyu Sang;Lee, Jun-Seo;Park, Kiho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.525-534
    • /
    • 2022
  • In this study, we investigated the applicability and optimal operating strategy of a closed-loop pressure retarded membrane distillation (PRMD) for brackish water desalination. For effective operation with net power generation, high temperature of heat source over 90 ℃ and feed flow rate at 0.6 kg/s are recommended. At 3 g/L of feed concentration, the average permeate flux and net energy density showed 8.04 kg/m2/hr and 2.56 W/m2, respectively. The average permeate flux and net energy density were almost constant in the range of feed concentration from 1 to 3 g/L. Compared to the case with seawater feed, the PRMD with brackish water feed showed higher average permeate flux and net energy density. Thus, PRMD application using brackish water feed can be more effective than that using seawater feed in terms of power generation.

Automated Maintenance Unmanned Monitoring System Using Intelligent Power Control System (지능형 전원제어장치를 이용한 자동화 유지보수 무인감시시스템)

  • Cha, Min-Uk;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.237-239
    • /
    • 2021
  • Failure and malfunction of the unmanned surveillance facility cost can lead to delays occurring until the person in charge arrives at the unmanned surveillance facility, and theft, damage, and information leakage damage caused by intruders. In addition, due to equipment failure and malfunction, additional costs are incurred due to constant inspection by the manager. In this paper, in order to compensate for the malfunction of unmanned facility costs, we propose a system that diagnoses the monitoring facility in real time, displays the contents of the problem, automatically restores the facility power, and informs the person in charge of the situation by text message. The proposed system is a surveillance facility consisting of main facilities such as video equipment (CCTV), sound equipment, floodlights, etc. And SMS server that can send text messages in real time. Through experiments, the effectiveness of the proposed system was verified.

  • PDF

A study on thermal fluid analysis in X-ray tube for non-fire alarm (비화재보를 위한 X-ray tube 내 열 유동해석에 관한 연구)

  • Yun, Dong-Min;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.33-38
    • /
    • 2022
  • Currently, Korea is an aging society, and it is expected to enter a super-aging society in about 4 years. Accordingly, many X-ray technologies are being developed. In X-rays, 99% of X-rays are converted into heat energy and 1% into light energy (X-rays). 99% of the thermal energy raises the temperature of the anode and its surroundings, and the cooling system is an important factor as overheating can affect the deterioration of X-ray quality and shortened lifespan. There is a method of forced air cooling using natural convection. Therefore, in this study, when X-rays were taken 5 times, Flow analysis was performed on heat removal according to temperature rise and cooling time for the heat generated at the anode of the X-ray tube (input power 60kW, 75kW, 90kW). Based on one-shot, the most rapid temperature rise section increased by more than 57% to 0.03 seconds, A constant temperature rises from 0.03 seconds to 0.1 seconds, It is judged that the temperature rises by about 8.2% or more at one time. After one-shot cooling, the cooling drops sharply from about 60% to 0.03 seconds, It is judged that the temperature has cooled by more than 86% compared to the temperature before shooting. One-shot is cooled by more than 86% with cooling time after 0.1 seconds, As the input power of the anode increases, the cooling temperature gradually increases. Since the tungsten of the anode target inside the X-ray tube may be damaged by thermal shock caused by a rapid temperature rise, an improvement method for removing thermal energy is required when using a high-input power supply.

Detection Limit of a NaI(Tl) Survey Meter to Measure 131I Accumulation in Thyroid Glands of Children after a Nuclear Power Plant Accident

  • Takahiro Kitajima;Michiaki Kai
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.131-143
    • /
    • 2023
  • Background: This study examined the detection limit of thyroid screening monitoring conducted at the time of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011 using a Monte Carlo simulation. Materials and Methods: We calculated the detection limit of a NaI(Tl) survey meter to measure 131I accumulation in the thyroid gland of children. Mathematical phantoms of 1- and 5-year-old children were developed in the simulation of the Particle and Heavy Ion Transport code System code. Contamination of the body surface with eight radionuclides found after the FDNPP accident was assumed to have been deposited on the neck and shoulder area. Results and Discussion: The detection limit was calculated as a function of ambient dose rate. In the case of 40 Bq/cm2 contamination on the body surface of the neck, the present simulations showed that residual thyroid radioactivity corresponding to thyroid dose of 100 mSv can be detected within 21 days after intake at the ambient dose rate of 0.2 µSv/hr and within 11 days in the case of 2.0 µSv/hr. When a time constant of 10 seconds was used at the dose rate of 0.2 µSv/hr, the estimated survey meter output error was 5%. Evaluation of the effect of individual differences in the location of the thyroid gland confirmed that the measured value would decrease by approximately 6% for a height difference of ±1 cm and increase by approximately 65% for a depth of 1 cm. Conclusion: In the event of a nuclear disaster, simple measurements carried out using a NaI(Tl) scintillation survey meter remain effective for assessing 131I intake. However, it should be noted that the presence of short-half-life radioactive materials on the body surface affects the detection limit.

Instability of a Two-Phase Loop Thermosyphon

  • Rhi, Seok-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.1019-1028
    • /
    • 2002
  • The instability of two-phase loop thermosyphons was investigated experimentally and analytically. Three orifice type inserts were used to study the effect of change in the pressure drop in the flow channel of the TLT on the flow instability and temperature fluctuation. It is observed that a decrease in the size of the orifice insert from 3.7 mm (no insert) to 0.71 mm drastically reduced the fluctuation of the temperature, especially at the evaporator section of the TLT. With the orifice type insert of 0.71 mm for the TLT, the overall temperature fluctuation was almost completely eliminated, especially at higher power input to the TLT The analysis based on the Kelvin-Helmholtz instability theory seems to predict reasonable well the loop stability state of the TLT with experimentally determined constant factors.

Effect of a Conductor Cladding on a Dielectric Slab for Coupling with a Side-polished Fiber

  • Kwon, Kwang-Hee;Song, Jae-Won
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.180-187
    • /
    • 2003
  • A theoretical presentation by using a three-dimensional finite difference beam propagating method (3-D FD-BPM) for the evanescent coupling is offered with respect to the refractive indexes between a side-polished optical fiber and an infinitely planar waveguide with a conductor cladding (PWGCC). The PWG is suspended at a constant distance from an unclad fiber core and attached with a perfect conductor (PEC) on one side. The coupling and propagation of light are found to depend on both the relationship between the refractive index values of two structures and the configuration of the side-polished fiber used in the PWGCC. The spreading of light in the unconfined direction of a PWGCC is presented with the distribution of electric fields in xy - plane and the absolute amplitude of electric fields along the x and y axis. The power of the light propagation in a fiber decreases exponentially along the fiber axis as it is transferred to the PWGCC, where it is carried away.

Comparison of Electrical Tree Initiation According to Flow Pattern in EHV Power Cable Insulation (초고압 전력 케이블 절연층의 Flow Pattern 방향각에 따른 전기 트리 개시 특성 비교)

  • Lee, Seung-Yoo;Kim, Young-Ho;Cho, Dae-Hee;Lee, In-Ho;Park, Wan-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1532-1534
    • /
    • 1999
  • Electrical treeing phenomenon, regarded as pre-breakdown which accelerates aging process leading an insulation to the complete breakdown, is with no doubt extremely fatal to the performance of the insulation. Investigated in this paper is electrical treeing representing local dielectric failure according to flow pattern, the flow history of liquid polyethylene formed during the extrusion process. Experiments of electrical tree initiation by means of ramp tests were conducted using newly developed electrode system with point-to-point structure. Constant voltage tests were also carried out with the electrode system to estimate the life time of the insulation. Results were analyzed using statistical method such as Weibull distribution.

  • PDF

The evaluation of fracture characteristics and the analysis of stress distribution of ferromagnetic materials by Barkhausen noise method (자기적 비파괴 방법으로서의 Barkhausen Noise를 이용한 강자성체의 파괴인성 및 응력분포해석)

  • Kim, Dong-Won;Kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1864-1866
    • /
    • 1999
  • The magnetic nondestructive test can be applied to evaluate the magnetic material characteristics and the fracture properties through the internal defects of SA-508 used in the pressure vessels of the nuclear power plants as the direct and accurate in-situ testing methods. The fracture toughness, yield strength and the stress distribution around the defects in the surface and sub-surface of magnetic materials can be directly estimated by Bark-hausen noise(BN) methods as NDT. The testing process of SA-508 by Barkhausen noise method was advanced by controlling the austenizing peak temperature and the time of maintenance at a constant austenizing peak temperature, therefore causing the variation of fracture toughness. Through above process. we can evaluate the variations of effective grain size and the correlation of effective grain size and FATT at each situation. And the stress distribution around the defects can be quantified nondestructively through Barkhausen method.

  • PDF

Shape Optimization of a Trapezoidal Micro-Channel (사다리꼴 미세유로의 형상최적화)

  • Husain, Afzal;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2666-2671
    • /
    • 2007
  • This work presents microchannel heat sink shape optimization procedure using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

  • PDF