• Title/Summary/Keyword: constant power

Search Result 2,851, Processing Time 0.031 seconds

A Complex Noise Suppression Algorithm for On-line Partial Discharge Diagnosis Systems (운전중 부분방전 진단시스템을 위한 복합 잡음제거 기법)

  • Yi, Sang-Hwa;Youn, Young-Woo;Choo, Young-Bae;Kang, Dong-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.342-348
    • /
    • 2009
  • This paper introduces a novel denoising algorithm for the partial-discharge(PD) signals from power apparatuses. The developed algorithm includes three kinds of specific denoising sub-algorithms. The first sub-algorithm uses the fuzzy logic which classifies the noise types in the magnitude versus phase PD pattern. This sub-algorithm is especially effective in the rejection of the noise with high and constant magnitude. The second one is the method simply removing the pulses in the phase sections below the threshold count in the count versus phase pattern. This method is effective in removing the occasional high level noise pulses. The last denoising sub-algorithm uses the grouping characteristics of PD pulses in the 3D plot of the magnitude versus phase versus cycle. This special technique can remove the periodical noise pulses with varying magnitudes, which are very difficult to be removed by other denoising methods. Each of the sub-algorithm has different characteristic and shows different quality of the noise rejection. On that account, a parameter which numerically expresses the noise possessing degree of signal, is defined and evaluated. Using the parameter and above three sub-algorithms, an adaptive complex noise rejection algorithm for the on-line PD diagnosis system is developed. Proposed algorithm shows good performances in the various real PD signals measured from the power apparatuses in the Korean plants.

Output Voltage Ripple Analysis and Design Considerations of Intrinsic Safety Flyback Converter Based on Energy Transmission Modes

  • Hu, Wei;Zhang, Fangying;Xu, Yawu;Chen, Xinbing
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.908-917
    • /
    • 2014
  • For the purpose of designing an intrinsic safety Flyback converter with minimal output voltage ripple based on a specified output current, this paper first classified the energy transmission modes of the system into three sorts, namely, the Complete Inductor Supply Mode-CCM (CISM-CCM), the Incomplete Inductor Supply Mode-CCM (IISM-CCM) and the Incomplete Inductor Supply Mode-DCM (IISM-DCM). Then, the critical secondary self-inductance assorting the three modes are deduced and expressions of the output voltage ripples (OVR) are presented. For a Flyback converter with constant loads and switching frequency, it is shown that the output voltage ripple in the CISM-CCM is the smallest and that it has no relationship with the secondary self-inductance. Otherwise, the OVR of the other two modes are bigger than the previously mentioned one. It is concluded that the critical inductance between the CISM-CCM and the IISM-CCM is the minimal secondary self-inductance to ensure the smallest output voltage ripple. At last, a design method to guarantee the minimum OVR within the scales of the input voltage and load are analyzed, and the minimum secondary self-inductance is proposed to minimize the OVR. Simulations and experiments are given to verify the results.

Adaptive Control of Peak Current Mode Controlled Boost Converter Supplied by Fuel Cell

  • Bjazic, Toni;Ban, Zeljko;Peric, Nedjeljko
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.122-138
    • /
    • 2013
  • Adaptive control of a peak current mode controlled (PCM) boost converter supplied by a PEM fuel cell is described in this paper. The adaptive controller with reference model and signal adaptation is developed in order to compensate the deviation of the response during the change of the operating point. The procedure for determining the adaptive algorithm's weighting coefficients, based on a combination of the pole-zero placement method and an optimization method is proposed. After applying the proposed procedure, the optimal adaptive algorithm's weighting coefficients can be determined in just a few iterations, without the use of a computer, thus greatly facilitating the application of the algorithm in real systems. Simulation and experimental results show that the dynamic behavior of a highly nonlinear control system with a fuel cell and a PCM boost converter, can fairly accurately be described by the dynamic behavior of the reference model, i.e., a linear system with constant parameters.

Space Vector PWM Method for Leakage Current Reduction and NP Current Control in 3-phase 3-level Converter used in Bipolar DC Distribution System (양극성 DC 배전용 3상 3-레벨 컨버터의 누설전류 저감과 NP 전류 제어를 위한 공간벡터 PWM 방법)

  • Lee, Eun-Chul;Choi, Nam-Sup;Kim, Hee-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.336-344
    • /
    • 2018
  • This study proposes a new PWM method for leakage current reduction and neutral point (NP) current control in three-phase three-level converter employed in bipolar DC distribution systems. The proposed PWM method uses medium vectors only when there is no need to control the NP current. Thus, common mode voltages are held constant to realize zero leakage current. Some space vectors that produce low-frequency common mode voltages are employed to minimize leakage currents when the average NP current needs to be a positive or negative value. The proposed space vector PWM is implemented based on barycentric coordinate. The validity of the proposed PWM method is verified by simulations and experiments.

New Single-stage Interleaved Totem-pole AC-DC Converter for Bidirectional On-board Charger

  • ;Kim, Sang-Jin;Kim, Byeong-U;Sin, Yang-Jin;Choe, Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.192-194
    • /
    • 2018
  • In this paper a new single-stage ac-dc converter with high frequency isolation and low components count is introduced. The proposed converter is constructed using two interleaved boost circuits in the grid side and non-regulating full bridge in the DC side. An optimized switching is implemented on the two interleaved boost circuits resulting in a ripple-free grid current without a ripple cancellation network; hence very small filter inductors are used. A simple and reliable closed-loop control system is easily implemented, since the phase-shift angle is the only independent variable. Moreover, current imbalance is avoided in the presented topology without current control loop in each phase. The proposed charger charges the battery with a sinusoidal-like current instead of a constant direct current. ZVS turn on of all switches is achieved throughout the operation in both directions of power flow without any additional components.

  • PDF

Development of Enhanced Contingency Screening and Selection Algorithm for On-line Transient Security Assessment (과도안전도 평가를 위한 개선된 상정고장 선택 및 여과 알고리즘 개발)

  • Kim Yong-Hak;Song Sung-Geun;Nam Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.306-314
    • /
    • 2005
  • In this paper, a new approach that is based on EEAC & only with network solutions for CS&S in the transient stability assessment is developed. The proposed CS&S algorithm in conjunction with EEAC to include the capability of performing on-line TSA without TDS is used to calculate the critical clearing time for stability index. In this algorithm, all generators are represented by classical models and all loads are represented by constant impedance load models. The accelerating & synchronizing power coefficient as an index is determined at its disturbance through solving network equation directly. As mentioned above, a new index for generator is generally used to determine the critical generators group. The generator rotor angle is fixed for non-critical generators group, but has equal angle increments for critical generators group. Finally, the critical clearing time is calculated from the power-angle relationship of equivalent OMIB system. The proposed CS&S algorithm currently being implemented is applied to the KEPCO system. The CS&S result was remarkably similar to TSAT program and SIME. Therefore, it was found to be suitable for a fast & highly efficient CS&S algorithm in TSA. The time of CS&S for the 139 contingencies using proposed CS&S algorithm takes less than 3 seconds on Pentium 4, 3GHz Desktop.

Electrical Characteristic of PMMA Thin Film by Plasma Polymerization Method with Process Pressure and RF Substrate Bias Power (공정압력 및 기판바이어스 인가유무에 따른 PMMA 플라즈마중합박막의 전기적 특성)

  • Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.697-702
    • /
    • 2011
  • In this paper, We have fabricated PMMA thin films by plasma polymerization method for organic thin film transistor's insulator layer. In the electrical characteristic results with deposition pressures and substrate RF bias power in thin film deposition process, we have got dielectric constant of 3.4, high deposition rate of 8.6 [nm/min] and high insulation characteristics in condition of RF100 [W], Ar20 [sccm], 5 [mtorr], RF bias 20 [W]. Therefore, the fabricated thin films are possible as insulation layer of OTFT and organic memory.

Performance Analysis of the Vertical Multi-stage Centrifugal Pump using Commercial CFD Code (상용 CFD코드를 이용한 입형 다단 원심펌프 성능해석)

  • MO Jang-Oh;KANG Shin-Jeong;SONG Geun-Taek,;NAM Cheong-Do;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.150-155
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pump including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is not only to confirm how much the effect of three kinds of blade inlet breadth (11mm, 11.5mm, 12mm) of impeller has influence on the performance of vertical multi-stage pump but also to make clear the cause about performance difference at the exit side of impeller and guide vane. The vertical multi-stage pump consisit of the impeller, guide, vane and cylinder. The grid of numerical analysis used to the vertical multi-stage pump is 18,000, 45,000, and 100000 cells in case of the impeller, guide vane, cylinder and total grid is 730,000 cells. The characteristics such as total pressure coefficient, total head, shaft horse power, power efficiency at the exit side of impeller and guide vane, discharge coefficient are represented according to flow rage changing.

  • PDF

Full Wave Cockroft Walton Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.246-252
    • /
    • 2011
  • A high-voltage power supply has been built for activation of the brain via stimulation using a Full Wave Cockroft-Walton Circuit (FWCW). A resonant half-bridge inverter was applied (with half plus/half minus DC voltage) through a bidirectional power transistor to a magnetic stimulation device with the capability of producing a variety of pulse forms. The energy obtained from the previous stage runs the transformer and FW-CW, and the current pulse coming from the pulse-forming circuit is transmitted to a stimulation coil device. In addition, the residual energy in each circuit will again generate stimulation pulses through the transformer. In particular, the bidirectional device modifies the control mode of the stimulation coil to which the current that exceeds the rated current is applied, consequently controlling the output voltage as a constant current mode. Since a serial resonant half-bridge has less switching loss and is able to reduce parasitic capacitance, a device, which can simultaneously change the charging voltage of the energy-storage condenser and the pulse repetition rate, could be implemented. Image processing of the brain activity was implemented using a graphical user interface (GUI) through a data mining technique (data mining) after measuring the vital signs separated from the frequencies of EEG and ECG spectra obtained from the pulse stimulation using a 90S8535 chip (AMTEL Corporation).

Margin Benefit Assessment of A Digital Monitoring System for Existing Analog Plants (기존 아날로그 발전소를 위한 디지탈 감시계통의 여유도 잇점평가)

  • Auh, Geun-Sun;Yoon, Tae-Young
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.294-299
    • /
    • 1994
  • Margin benefits are quantatively assessed when a Digital Monitoring System(DMS) is assumed to be installed to an operating Westinghouse analog type plant. Applied plant and cycle is YongGwang Unit 1 Cycle 6. The referenced digital monitoring system is the COLSS (Core Operating Limit Supervisory System) of ABB-CE. Considered fuel design limits are DNBR and LDCA Fq. 2003-D Power distributions within the present CAOC (Constant Axial Offset Control) limits are calculated for the analysis. The most limiting DNB prevention event of CEA Withdrawal is analyzed with the ROPM (Required OverPower Margin) concept of ABB-CE. The result show that the DMS can bring around 7% more margins for both DNB and LOCA Fq standpoints of view. The DMS can also monitor the PCI (Pellet-Cladding Interaction) limits.

  • PDF