• Title/Summary/Keyword: constant power

Search Result 2,851, Processing Time 0.025 seconds

The Electrical Properties of BaTiO$_3$Ceramics Thin Films by RF Sputtering Technique (RF Sputtering법에 의한 BaTiO$_3$세라믹스 박막의 전기적 특성)

  • 이문기;류기원;배선기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.289-292
    • /
    • 1997
  • BaTiO$_3$thin film capacitor were prepared on Pt(100)/SiO$_2$/Si(100)wafer by RF sputtering technique. Dielectric and electrical characteristics of the thin film capacitor are investigated. The Dielectric constant and loss were about 683 and 5[%], respectively. We found that the leakage current of thin film capacitor is depend on RF power during deposition. Because of increase of activation energy, leakage current inclosed at high RF power and sheet resistivity of the films was decreased. Swithching voltage of thin film capacitor was 4.4[V]

  • PDF

DYNAMIC CHARACTERISTICS OF GAIN-CLAMPED L-BAND EDFA WITH BI-DIRECTIONAL PUMPS (양방향 고정이득 L-BAND EDFA의 응답 특성)

  • IkSangKim
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.4
    • /
    • pp.297-311
    • /
    • 2001
  • The gain-clamped EDFA has been developed to eliminate the output power change of WDM surving channels to occur with added or dropped channels, which degrades the performance of WDM optical network. It maintains the constant gain of surviving channels when WDM channels are added or dropped in a network amplifying node. In this paper, the bi-directionally pumped gain-clamped EDFA is implemented to compensate the change of the input power by a lasing. The results show that the lasing of a short wavelength and backward propagation is the optimal condition to minimize the transient response of surviving channels in terms of the overshoot and gain saturation due to the inhomogeneous broadening effect.

  • PDF

Analysis of Operation Conditions of a Reheat Cycle Gas Turbine for a Combined Cycle Power Plant (복합화력 발전용 재열사이클 가스터빈의 운전상태 분석)

  • Yoon, Soo-Hyoung;Jeong, Dae-Hwan;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.35-44
    • /
    • 2006
  • Operation conditions of a reheat cycle gas turbine for a combined cycle power plant was analyzed. Based on measured performance parameters of the gas turbine, a performance analysis program predicted component characteristic parameters such as compressor air flow, compressor efficiency, efficiencies of both the high and low pressure turbines, and coolant flows. The predicted air flow and its variation with the inlet guide vane setting were sufficiently accurate. The compressor running characteristic in terms of the relations between air flow, pressure ratio and efficiency was presented. The variations of the efficiencies of both the high and low pressure turbines were also presented. Almost constant flow functions of both turbines were predicted. The current methodology and obtained data can be utilized for performance diagnosis.

Analysis of an Robust Control for a Vehicle Active Suspension System (차량 능동현가시스템에 대한 강인 제어 해석)

  • Kim, J.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.3
    • /
    • pp.20-27
    • /
    • 2010
  • A vehicle suspension system performs two functions, the ride quality and the stability, which conflict with each other. An active suspension system has an external energy source, from which energy is always supplied to the system for continuous control of vehicle motion. Therefore, an active suspension system can have even more improved performance. Some control laws have been proposed for active suspension system, but in this paper, an optimal variable structure control(VSC) is proposed. The VSC method is well suited for a class of nonlinear system and can address the robustness issues to constant modelling errors and disturbances. This paper develops an optimal VSC controller and compares its performance to those of a passive suspension system and an active suspension system with an optimal controller. The transient and frequency responses are analyzed respectively.

  • PDF

The Output Power Control in the Sea-Wave Input Generation System by the Secondary Excited System (이차여자시스템에 의한 파력발전시스템의 출력제어)

  • 김문환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1013-1018
    • /
    • 2003
  • This paper deals with the secondary excited induction generator applied to random energy input generation system. As it is preferred to stabilize the output voltage and frequency in the constant level, microcomputer controlled inverter connected to the secondary windings supplies the secondary current with slip frequency. For testing the appropriateness of this paper, the input torque simulator, which generate the statistically varied wave power input torque in the laboratory to drive the secondary excited induction generator, are constructed. The experimental and numerical results show the advantage of secondary excited induction generator system for the random input wave generation system.

Utility interactive PV system using buck-boost chopper and partial resonant Inverter (승강압초퍼와 부부공진 인버터를 이용한 계통연계형 태양광 발전시스템)

  • 고강훈;이현우;김영철;정명웅;홍두성
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.278-281
    • /
    • 1999
  • In a utility interactive photovoltaic system, a PWM inverter is used for the connection between the photovoltaic arrays and the utility. The DC current becomes pulsated causes the distortion of the AC current waveform. This paper presents the reduced pulsation of DC input current by operating the inverter with buck-boost chopper in the discontinuous conduction mode. The DC current with contains harmonics component is analyzed by means of separating into two terms of a ripple component and a direct component. The constant DC current without pulsation is supplied from photovoltaic array to the inverter. The proposed inverter system provide a sinusoidal AC current for domestic loads and the utility line with unity power factor.

  • PDF

Optimal Topologies for Cascaded Sub-Multilevel Converters

  • Babaei, Ebrahim
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.251-261
    • /
    • 2010
  • The general function of a multilevel converter is to synthesize a desired output voltage from several levels of dc voltages as inputs. In order to increase the steps in the output voltage, a new topology is recommended in [1], which benefits from a series connection of sub-multilevel converters. In the procedure described in this reference, despite all the advantages, it is not possible to produce all the steps (odd and even) in the output. In addition, for producing an output voltage with a constant number of steps, there are different configurations with a different number of components. In this paper, the optimal structures for this topology are investigated for various objectives such as minimum number of switches and dc voltage sources and minimum standing voltage on the switches for producing the maximum output voltage steps. Two new algorithms for determining the dc voltage sources magnitudes have been proposed. Finally, in order to verify the theoretical issues, simulation and experimental results for a 49-level converter with a maximum output voltage of 200V are presented.

A Study on the High-frequency Operation Characteristics of the High-pressure Sodium Lamps (고압 나트륨램프의 고주파 방전특성 연구)

  • Chee, Chol-Kon;Kim, Hoon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.11
    • /
    • pp.495-502
    • /
    • 1986
  • The change of the discharge characteristics of the high-pressure sodium (HPS) lamps is investigated over a power source frequency range of 60 Hz to 30, 000 Hz. As the frequency increases, the light and electrical characteristics of the HPS lamps are improved since the re-ignition is not needed due to the constant electron density, and the cathode fall is reduced. But at the certain frequency range, the arc instability called acoustic resonance occurs, and the arc tube is damaged. Regarding these characteristics and the kind of the illuminating system, a proper frequency is selected to operate the HPS lamps. And a new measuring system using a computer and the storage-scope is developed to avoid the error of the ordinary gauges at high frequency power.

  • PDF

Coordination Control of ULTC Transformer and STACOM using Kohonen Neural Network (코호넨 신경회로망을 이용한 ULTC 변압기와 STACOM의 협조제어)

  • 김광원;이흥재
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1103-1111
    • /
    • 1999
  • STACOM will be utilized to control substation voltage in the near future. Although STACOM shows good voltage regulation performance owing to its rapid and continuous response, it needs additional reactive power compensation device to keep control margin for emergency such as fault. ULTC transformer is one of good candidates. This paper presents a Kohonen Neural Network (KNN) based coordination control scheme of ULTC transformer and STACOM. In this paper, the objective function of the coordination control is minimization of both STACOM output and the number of switchings of ULTC transformer while maintaining substation voltage magnitude to the predefined constant value. This coordination, control is performed based on reactive load trend of the substation and KNN which offers optimal tap position in view of STACOM output minimization. The input variables of KNN are active and reactive power of the substation, current tap position, and current STACOM output. The KNN is trained by effective Iterative Condensed Nearest Neighbor (ICNN) rule. This coordination control applied to IEEE 14 bus system and shows satisfactory results.

  • PDF

The Influence of Inductive Loads on Power System Voltage Stabilization (유도부하가 전력 계통의 전압안정화에 미치는 영향)

  • Chung, Jai-Kil;Park, Sung-Dae;Cho, Yang-Haeng;Oh, Chang-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.35-37
    • /
    • 1993
  • This paper shows that the presence of constant impedance loads and induction motors in power system's loading contents can lead to transient voltage instabilities during normal system manipulations such as switchings. The abnormal induction motor characteristics during system transients which initiate the voltage instabilities are illustrated. The influence of motor and network parameters, such as motor inertia mechanical load quantity and nature on the severity of the voltage instability are studied.

  • PDF