Modeling Paddlewheel-Driven Circulation in a Culture Pond (축제식 양식장에서 수차에 의한 순환 모델링)
-
- Korean Journal of Fisheries and Aquatic Sciences
- /
- v.34 no.6
- /
- pp.643-651
- /
- 2001
Paddlewheel-driven circulation in a culture pond has been simulated based on the depth integrated 2 dimensional hydrodynamic model. Acceleration by paddlewheel is expressed as shaft force divided by water mass discharged by paddlewheel blades. The model has been calibrated and applied to culture ponds as following steps:- i) The model predicted velocities at every 10 m along longitudinal direction from the paddlewheel. The model was calibrated comparing the results with the measured values at mass correction factor
Photopolymer is a material for recording three dimensional holograms containing photo information. Photopolymer has been found to be a proper material due to many advantages such as high DE value, easy processing, and low price. Compositions of PVA, monomer, initiater and photosensitizer were determined by previous experiments and the compositions of
For accurate laboratory evaluations of soil deposits, it is essential that the samples are undisturbed. An artificial ground-freezing system is the one of the most effective methods for obtaining undisturbed samples from sand deposits. The objective of this study is to estimate the shear strengths and the characteristics of elastic waves of frozen-thawed and unfrozen specimens through the undrained triaxial compression test. For the experiments, Jumunjin standard sands are used to prepare frozen and unfrozen specimens with similar relative densities (60% and 80%). The water pluviation method is used to simulate the fully saturated condition under the groundwater table. When thawing the frozen specimens, the temperature is measured every minute. After the specimens are completely thawed, undrained triaxial compression tests are conducted using the same procedures as for the unfrozen specimens. During the triaxial tests (saturation, consolidation, and shear phase), compressional and shear waves are measured. The results show that the freeze-thaw process has minor effects on the peak deviatoric stress and shear strength values, and that the process does not affect the internal friction angle. The compressional wave velocity increases with increasing B-value to 1800 m/s in the saturation phase, but tends to remain constant in the process of consolidation and shearing. The shear wave velocity decreases with increasing B-value in the process of saturation, but changes velocity in accordance with the change in effective stress in the processes of consolidation and shearing. The compressional wave velocity has similar values regardless of the freeze-thaw process, but values of shear wave velocity are slighly lower in frozen-thawed specimens than in unfrozen specimens. This study is a preliminary experiment for estimating the shear strength and characteristics of elastic wave velocity in undisturbed frozen specimens that have been obtained using the artificial ground-freezing method.
As the world becomes more globalized, business competition becomes fiercer, while consumers' needs for less expensive quality products are on the increase. Business operations make an effort to secure a competitive edge in costs and services, and the logistics industry, that is, the industry operating the storing and transporting of goods, once thought to be an expense, begins to be considered as the third cash cow, a source of new income. Logistics centers are central to storage, loading and unloading of deliveries, packaging operations, and dispensing goods' information. As hubs for various deliveries, they also serve as a core infrastructure to smoothly coordinate manufacturing and selling, using varied information and operation systems. Logistics centers are increasingly on the rise as centers of business supply activities, growing beyond their previous role of primarily storing goods. They are no longer just facilities; they have become logistics strongholds that encompass various features from demand forecast to the regulation of supply, manufacturing, and sales by realizing SCM, taking into account marketability and the operation of service and products. However, despite these changes in logistics operations, some centers have been unable to shed their past roles as warehouses. For the continuous development of logistics centers, various measures would be needed, including a revision of current supporting policies, formulating effective management plans, and establishing systematic standards for founding, managing, and controlling logistics centers. To this end, the research explored previous studies on the use and effectiveness of logistics centers. From a theoretical perspective, an evaluation of the overall introduction, purposes, and transitions in the use of logistics centers found issues to ponder and suggested measures to promote and further advance logistics centers. First, a fact-finding survey to establish demand forecast and standardization is needed. As logistics newspapers predicted that after 2012 supply would exceed demand, causing rents to fall, the business environment for logistics centers has faltered. However, since there is a shortage of fact-finding surveys regarding actual demand for domestic logistic centers, it is hard to predict what the future holds for this industry. Accordingly, the first priority should be to get to the essence of the current market situation by conducting accurate domestic and international fact-finding surveys. Based on those, management and evaluation indicators should be developed to build the foundation for the consistent advancement of logistics centers. Second, many policies for logistics centers should be revised or developed. Above all, a guideline for fair trade between a shipper and a commercial logistics center should be enacted. Since there are no standards for fair trade between them, rampant unfair trades according to market practices have brought chaos to market orders, and now the logistics industry is confronting its own difficulties. Therefore, unfair trade cases that currently plague logistics centers should be gathered by the industry and fair trade guidelines should be established and implemented. In addition, restrictive employment regulations for foreign workers should be eased, and logistics centers should be charged industry rates for the use of electricity. Third, various measures should be taken to improve the management environment. First, we need to find out how to activate value-added logistics. Because the traditional purpose of logistics centers was storage and loading/unloading of goods, their profitability had a limit, and the need arose to find a new angle to create a value added service. Logistic centers have been perceived as support for a company's storage, manufacturing, and sales needs, not as creators of profits. The center's role in the company's economics has been lowering costs. However, as the logistics' management environment spiraled, along with its storage purpose, developing a new feature of profit creation should be a desirable goal, and to achieve that, value added logistics should be promoted. Logistics centers can also be improved through cost estimation. In the meantime, they have achieved some strides in facility development but have still fallen behind in others, particularly in management functioning. Lax management has been rampant because the industry has not developed a concept of cost estimation. The centers have since made an effort toward unification, standardization, and informatization while realizing cost reductions by establishing systems for effective management, but it has been hard to produce profits. Thus, there is an urgent need to estimate costs by determining a basic cost range for each division of work at logistics centers. This undertaking can be the first step to improving the ineffective aspects of how they operate. Ongoing research and constant efforts have been made to improve the level of effectiveness in the manufacturing industry, but studies on resource management in logistics centers are hardly enough. Thus, a plan to calculate the optimal level of resources necessary to operate a logistics center should be developed and implemented in management behavior, for example, by standardizing the hours of operation. If logistics centers, shippers, related trade groups, academic figures, and other experts could launch a committee to work with the government and maintain an ongoing relationship, the constraint and cooperation among members would help lead to coherent development plans for logistics centers. If the government continues its efforts to provide financial support, nurture professional workers, and maintain safety management, we can anticipate the continuous advancement of logistics centers.
1. If one unity is given to the prongs whose ends touch each other for estimating the internal stresses occuring in it, the internal stresses which are developed in the open prongs can be evaluated by the ratio to the unity. In accordance with the above statement, an equation was derived as follows. For employing this equation, the prongs should be made as shown in Fig. I, and be measured A and B' as indicated in Fig. l. A more precise value will result as the angle (J becomes smaller.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70