• Title/Summary/Keyword: consolidation velocity

Search Result 68, Processing Time 0.029 seconds

Material Characteristics and Deterioration Diagnosis of the Pagoda of Buddhist Priest Jeongjin in Bongamsa Temple, Mungyeong, Korea (문경 봉암사 정진대사원오탑의 재질특성과 훼손도 진단)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Han, Byeong-Il
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.357-369
    • /
    • 2011
  • The Bongamsa Jeongjindaesa Wonotap Pagoda (Treasure No. 171) constructed in the 10th century composed mainly of leucocratic granite with feldspar phenocryst. The major rock-forming minerals are quartz, orthoclase, plagioclase and some biotite. This pogoda is highly damaged physical weathering which are break-out, flakes, exfoliation and cracks. As a result of the infrared thermography on the surface of the pagoda, internal exfoliations occurred to cracks. Also, P-XRF analysis showed that Fe, S, Ca and Mn of concentration were so high in the discoloration parts. The coated part of red pigment has a high five times in Fe content than the fresh rock surface. This result suggests that material of red pigment is hematite. Ultrasonic velocity of the stone properties were from 831 to 2,457 m/s, but it measured velocity of less than 1,000m/s in part of damaged area. Therefore, we suggest for safety conservation for weathered parts of the pagoda, that is in want of rejoin and consolidation treatment about serious damage parts.

Assessment of concrete degradation in existing structures: a practical procedure

  • Porco, Francesco;Uva, Giuseppina;Fiore, Andrea;Mezzina, Mauro
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.701-721
    • /
    • 2014
  • In the assessment of existing RC buildings, the reliable appraisal of the compressive strength of in-situ concrete is a fundamental step. Unfortunately, the data that can be obtained by the available testing methods are typically affected by a high level of uncertainty. Moreover, in order to derive indications about the degradation and ageing of the materials by on site tests, it is necessary to have the proper terms of comparison, that is to say, to know the reference data measured during the construction phases, that are often unavailable when the building is old. In the cases when such a comparison can be done, the in situ strength values typically turn out to be lower than the reference strength values (tests performed on taken samples during the construction). At this point, it is crucial to discern and quantify the specific effect induced by different factors: ageing of the materials; poor quality of the placement, consolidation or cure of the concrete during the construction phases; damage due to drilling. This paper presents a procedure for correlating the destructive compressive tests and non-destructive tests (ultrasonic pulse velocity tests) with the data documenting the compressive strength tested during the construction phases. The research work is aimed at identifying the factors that induce the difference between the in-situ strength and cubes taken from the concrete casting, and providing, so, useful information for the assessment procedure of the building.

Relationship between Stiffness and Shear Strength of Normally Consolidated Clay using Triaxial Compression Tests and Shear Wave Measurements (삼축압축시험과 전단파 계측을 이용한 정규압밀 점성토의 강성도와 전단강도의 상관관계)

  • Oh, Sang-Hoon;Kim, Hak-Sung;Kim, Eun-Jung;Park, In-Beom;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1124-1131
    • /
    • 2008
  • Thanks to a new in-situ seismic probe, using bender elements and penetration scheme, a simple linear relationship between undrained shear strength(Cu) and shear wave velocity(Vs) was obtained. This priceless relationship is worthy to be illuminated further in ideal laboratory environment. To avoid sampling disturbance effect, special consolidation cylinders were used to make normally consolidated specimens from kaolinite suspension. The undrained shear strengths of the specimens were measured using unconsolidated undrained triaxial compression tests. Also shear wave velocity measurements were performedprior to shearing the same specimens, using the bender elements installed in the base pedestal and the top cap of the triaxial compression cell. The Cu-Vs relationship is fairly linear and supports the linear trend of clayey silt obtained using field testing. Also the classic density-shear modulus relationship for soft clay proposed by Hardin and Black(1969) was once more verified hereby.

  • PDF

Geoacoustic Characteristics of Shelf Sediment in the South Sea and Southeastern Sea of Korea (남해 및 남동해역 대륙붕 퇴적물의 지음향 특성)

  • KIM Dae Choul;SEO Young Kyo;JUNG Ja Hun;KIM Gil Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.312-322
    • /
    • 2004
  • Physical and geoacoustic properties of inner shelf sediment in the South and Southeastern Seas of Korea have been studied based on six piston core samples. The sediments are largely composed of homogeneous mud except the core from the southeasternmost part of the area. Both physical and geoacoustic properties and mean grain size are relatively uniform with sediment depth, suggesting little effect of sediment compaction and/or consolidation. Mean grain size appears to be the most Important variable to determine the physical and acoustic properties. In contrast, the attenuation shows more or less fluctuations. Correlations between physical properties and sediment texture show slight deviations from those of the compared data, caused by the difference of sedimentary processes, mineral composition, and the difference of measurement system. In particular, the velocity is lower (approximately 20-30 m/s) than that of the previous data measured in the same area. This is probably due to the difference in velocity measurement system (particularly, error by a length of sample). We propose new relationships for physical and geoacoustic characteristics of shelf sediment in the study area.

Shear wave velocity of fiber reinforced cemented Toyoura silty sand

  • Safdar, Muhammad;Newson, Tim;Schmidt, Colin;Sato, Kenichi;Fujikawa, Takuro;Shah, Faheem
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.207-219
    • /
    • 2021
  • Several additives are used to enhance the geotechnical properties (e.g., shear wave velocity, shear modulus) of soils to provide sustainable, economical and eco-friendly solutions in geotechnical and geo-environmental engineering. In this study, piezoelectric ring actuators are used to measure the shear wave velocity of unreinforced, fiber, cemented, and fiber reinforced cemented Toyoura sand. One dimensional oedometer tests are performed on medium dense specimens of Toyoura sand-cement-fiber-silica flour mixtures with different percentages of silica flour (0-42%), fiber and cement (e.g., 0-3%) additives. The experimental results indicate that behavior of the mixtures is significantly affected by the concentration of silica flour, fiber and cement additives. Results show that with the addition of 1-3% of PVA fibers, the shear wave velocity increases by only 1-3%. However, the addition of 1-4% of cement increases the shear wave velocity by 8-35%. 10.5-21% increase of silica flour reduces the shear wave velocity by 2-5% but adding 28-42% silica flour significantly reduces the shear wave velocity by 12-31%. In addition, the combined effect of cement and fibers was also found and with only 2% cement and 1% fiber, the shear wave velocity increase was found to be approximately 24% and with only 3% cement and 3% fibers this increased to 35%. The results from this study for the normalized shear modulus and normalized mean effective stress agree well with previous findings on pure Toyoura sand, Toyoura silty sand, fiber reinforced, fiber reinforced cemented Toyoura sand. Any variations are likely due to the difference in stress history (i.e., isotropic versus anisotropic consolidation) and the measurement method. In addition, these small discrepancies could be attributed to several other factors. The potential factors include the difference in specimen sizes, test devices, methods of analysis for the measurement of arrival time, the use of an appropriate Ko to convert the vertical stresses into mean effective stress, and sample preparation techniques. Lastly, it was investigated that there is a robust inverse relationship between α factor and 𝞫0 exponent. It was found that less compressible soils exhibit higher 𝜶 factors and lower 𝞫0 exponents.

Compaction Simulator Study on Pectin Introducing Dwell Time

  • Kim, Hyun-Jo;Venkatesh, Gopi
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.243-247
    • /
    • 2005
  • Although many scientists have used pectin, its feasibility in terms of tablet manufacturability with a high speed machine has never been evaluated. Therefore, compactibility of different pectin types for large scale tableting operation has been evaluated. The compactibility behavior of powder pectins was studied by a compaction simulator. It was found that pectin on its own does not produce tablets of acceptable quality even at a punch velocity as low as 20 rpm (e.g. low tensile strengths, capping and lamination irrespective of applied compression force). Thus, dwell time was introduced and more hard compact was produced as relaxation time in die increases. It was concluded that frequent structural failure observed in both pectin types was due to lack of plastic deformation, poor compactibility and high elastic recovery.

Mechanical and Electrical Properties of Hydrate-bearing Sediments (하이드레이트 함유 퇴적물의 역학적 성질 및 지구물리 특성)

  • Lee, J.Y.;Francisca, F.;Santamarina, J.C.;Ruppel, C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.594-596
    • /
    • 2007
  • Using an oedometer cell instrumented to measure the evolution of electromagnetic properties, small strain stiffness, and temperature, we conducted consolidation tests on four types of sediments. The tested specimens include sediments with different gas hydrate saturation at four stages of loading. The test results show that the electromagnetic and mechanical properties of hydrate-bearing marine sediments are governed by the vertical effective stress, stress history, porosity, hydrate saturation, fabric, ionic concentration of the pore fluid, and temperature. The results also show that permittivity and electrical conductivity data can be combined to estimate hydrate volume fraction in laboratory sediments, methodology that might eventually be extended for estimation of hydrate concentrations in field settings.

  • PDF

Application of Bender Element Tests for the Estimation of Maximum shear Modulus in Calibration Chamber (모형 지반의 최대 전단탄성계수 평가를 위한 벤더 엘리먼트 시험의 적용)

  • Kwon, Hyung-Min;Ko, Young-Ju;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1278-1284
    • /
    • 2008
  • This study carried out bender element tests in a calibration chamber in order to estimate the characteristics of soil specimen prepared in a calibration chamber. Basically, the purpose of bender element test is to measure the shear wave velocity. Bender element test cannot only confirm the status of soil specimen deposited in a chamber, but also estimate the consolidation process indirectly. In order to carry out bender element test in a calibration chamber, a pair of bender elements was installed inside the chamber, using the 'ㄷ' shaped frame. For the sandy soils having various relative densities in various stress conditions, the maximum shear modulus was estimated. From the comparison with bender element test results in a triaxial testing device, testing device and procedure was validated.

  • PDF

Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow (왕복류 흐름을 고려한 지반의 수리저항성능 실험)

  • Kim, Young-Sang;Gang, Gyeong-O
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.118-125
    • /
    • 2011
  • Conventional erosion function apparatus (EFA) which has been used to measure the hydraulic resistance of soil was improved to consider direction change of the current flow. Using improved apparatus, hydraulic resistance capacities of the artificially composed clayey soil and sandy soil were compared. Test result shows that scour rates which were measured under the bi-directional flow were much higher than those measured under unidirectional flow for both type soils. Scour rate of sandy soil was higher than that of clayey soil. Velocity averaged scour rate of specimen which was consolidated under the relatively large consolidation pressure is higher than that of specimen which is consolidated under small consolidation pressure, which means scour problem under bidirectional flow may be more serious for the deep seabed ground.

Effect of Consolidation using Artificial Porous Material for Stone Cultural Property (인공 다공질체를 이용한 석조문화재 강화제의 처리효과)

  • Lee, Jae-Man;Lee, Myeong-Seong;Kim, Jae-Hwan;Lee, Mi-Hye
    • Journal of Conservation Science
    • /
    • v.26 no.3
    • /
    • pp.325-334
    • /
    • 2010
  • In order to clarify the effect of consolidant, the artificial porous material with low intensity was manufactured using granite powder and Portland cement. We have prepared four kinds of alkoxysilane system consolidants, a acrylic resin and a epoxy resin and investigated about characteristics before and after consolidation. As a result of the research, Silres BS OH 100 was effective for density and surface hardness. SS-101 with hydrophobicity and Site SX-RO with hydrophilicity had the good durability over salts weathering. On the other hand, Syton HT-50 and Paraloid B72 were easily destructed by salt weathering because they were concentrated on surface area by the low penetration depth. Araldite 2020 was the most effective consolidant for improvement of physical properties.