• Title/Summary/Keyword: conservation of mass

Search Result 519, Processing Time 0.025 seconds

DEVELOPMENT OF CAVITATING FLOW ANALYSIS CODE (캐비테이팅 유동 해석 코드 개발)

  • Yang, Seung-Yong;Myong, Hyon-Kook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.122-126
    • /
    • 2010
  • The Rayleigh Plesset based cavitation model(Singhal et al., 2002) is reproduced through a pressure-based finite-volume numerical method using unstructured hexagonal mesh, which is developed by the author. In the process of reproduction, a mass conservation problem by the large density changes associated with phase change, which wasn't mentioned by them, has been exposed. One resolution about it is proposed and then cavitating flow characteristics around a hydrofoil (NACA66) for evaluation of the code are investigated. The computational results are verified by the comparison with the experimental results and show good agreements with them.

  • PDF

Numerical Study of Droplet Dynamics in a PEMFC Air Flow Channel (고분자전해질형 연료전지의 공기 채널 내에서의 액적 거동에 대한 수치적 연구)

  • Choi, Ji-Young;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2390-2395
    • /
    • 2008
  • The water droplet motion in an air flow microchannel with pores through which water emerges is studied numerically by solving the equations governing the conservation of mass and momentum. The gas-liquid interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface and is modified to implement the contact angle conditions on the wall and pores. The numerical results show that the droplet growth and detachment pattern depend significantly on the contact angle and inlet air velocity. Also, the dynamic interaction between the droplets growing on multiple pores is investigated. The pore arrangement subject to droplet merging is found to be not effective for water removal.

  • PDF

Numerical Study on Droplet Spread Motion after impingement on the wall using improved CIP method (수정된 CIP방법을 이용한 벽면 충돌 후 액적의 퍼짐 현상에 대한 수치해석 연구)

  • Son, S.Y.;Ko, G.H.;Lee, S.H.;Ryou, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.109-114
    • /
    • 2010
  • Interface tracking of two phase is significant to analyze multi-phase phenomena. The VOF(Volume of Fluid) and level set are well known interface tracking method. However, they have limitations to solve compressible flow and incompressible flow at the same time. CIP(Cubic Interpolate Propagation) method is appropriate for considering compressible and incompressible flow at once by solving the governing equation which is divided up into advection and non-advection term. In this article, we analyze the droplet impingement according to various We number using improved CIP method which treats nonlinear term once more comparison with original CIP method. Furthermore, we compare spread radius after droplet impingement on the wall with the experimental data and original CIP original CIP method, and it reduces the mass conservation error which is generated in the numerical analysis comparison with original CIP method.

  • PDF

NUMERICAL STUDY ON THE MICRO-LINE PATTERNING PROCESS USING AN INKJET PRINGTING METHOD (잉크젯 방법을 통한 마이크로 라인 형성에 관한 수치적 연구)

  • Lee, W.R.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.548-550
    • /
    • 2010
  • The droplet motion on a flat substrate with contact angle hysteresis is studied by solving the equations governing the conservation of mass and momentum. The liquid- gas interface is determined by an level-set method which is based on a sharp-interface representation for accurately imposing the matching or coupling conditions at the interface. The method is modified to treat the dynamic contact angle at the liquid-gas-solid interface. The computations are performed to investigate a droplet impact and merging pattern on a flat substrate to find a optimal condition in a micro-line patterning process. The effects of dynamic contact angles on droplet motion are quantified.

  • PDF

Role of Chemical Fertilizer and Change of Agriculture in Korea (우리나라 농업의 변천과 비료의 역할)

  • Chung, Doug-Y.;Lee, Kyo-S.
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.1
    • /
    • pp.69-83
    • /
    • 2008
  • The self-supply rate of Korea in 2006 was approximately 27.3 % by importing 13.99Mt for 19.79Mt of demanded amount. Among the imported crops, wheat, corn, and soybean consumed 95 % for the total imported amount, and wheat, corn, and soybean were 3.5Mt(Table use : 0.22Mt; Feed stuff : 0.13Mt), 8.7Mt(Table use : 0.19Mt; Feed stuff : 0.68Mt), and 1.2Mt (Table use : 0.03Mt; Feed stuff : 0.09Mt), respectively. On the other hand, our government has prepared the strategies for a great fear of food according to sharp price rise of the international crops by maintaining the self-supply rate of 5 % excluding 5.23Mt of rice in Korea. Also concern for recycled energy known as future energy for era of high oil price and global warming due to green house gas is rapidly growing. Therefore, our country which has relied on import of the whole oil needed in Korea and has to keep Kyoto Agent to request reduction of green house gas fully support research and practical use for agricultural products as resource of alternate energy. At first, we have to develop the mass production technology in order to secure a program of self-supply of food for bioenergy production utilizing agricultural product in Korea. But we assume that this matter is difficult to achieve under the current agriculture system that more emphasizes the environment conservation such as environmentally-friendly agriculture than production of food.

  • PDF

Physics on cancer and its curing

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.91-97
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging n-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion because of the n-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. An understanding of the mechanisms responsible for the control of normal proliferation and differentiation of the various cell types which make up the human body will undoubtedly allow a greater insight into the abnormal growth of cells, A large body of biochemical evidence was eventually used to generate a receptor model with an external ligand binding domain linked through a single trans-membrane domain to the cytoplasmic tyrosine kinase and autophosphory-lation domains. The ligand induced conformational change in the external domain generates either a push-pull or rotational signal which is transduced from the outside to the inside of cell.l.ell.

  • PDF

Effects of Temperature and Irradiance on Growth of Ulva prolifera (Chlorophyta) (가시파래(Ulva prolifera)의 생장에 미치는 온도 및 조도의 영향)

  • Kang, Pil Joon;Nam, Ki Wan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.6
    • /
    • pp.845-848
    • /
    • 2016
  • The effects of temperature and irradiance on the growth of Ulva prolifera O.F. $M{\ddot{u}ller$ (Chlorophyta), which has been used commercially as food in Korea, were examined in laboratory culture to conserve the strain. Experiments were conducted under combined factors of temperatures of 5, 10, 15, 20 and $25^{\circ}C$ and irradiances of 30, 50, 80 and $100{\mu}mol\;m^{-2}s^{-1}$. The maximum growth of the U. prolifera germlings was observed at $20^{\circ}C$ and $80{\mu}mol\;m^{-2}s^{-1}$, and the minimum growth was recorded at $5^{\circ}C$ and $100{\mu}mol\;m^{-2}s^{-1}$. Considering these results, the species appears to survive under wide ranges of temperature and irradiance, although growth is inhibited by high irradiances of over $100{\mu}mol\;m^{-2}s^{-1}$. This appears to be due to the in situ habitat niche of Ulva prolifera, which is the middle to lower intertidal zone. In conclusion, optimal conditions for the long-term conservation of Ulva prolifera can be established under relatively low temperatures ($5^{\circ}C$) and high irradiance ($100{\mu}mol\;m^{-2}s^{-1}$), while the optimal conditions for mass production are $20^{\circ}C$ and $80{\mu}mol\;m^{-2}s^{-1}$.

Compositional and Microstructural Study of Punchong from Hakbongni, Kongju (공주 학봉리 분청에 대한 성분과 미세구조의 분석)

  • Lee, Young Eun;Koh, Kyongshin
    • Journal of Conservation Science
    • /
    • v.6 no.1 s.7
    • /
    • pp.3-14
    • /
    • 1997
  • Twelve Punchong sherds collected in Hakbongni, Kongju where the well known iron-painted on white slip were manufactured from late 15C to early 16C were analyzed for their composition and microstructure. The composition of the body was analyzed by X-ray fluorescence and that of glaze by electron probe micro-analyzer. Microstructure was observed by optical microscope, polarizing microscope, EPMA, and X-ray diffractometer. The results of composition of body and glaze of Hakbongni were compared with those of Punchong from Yongsuri, Boryong which was close to Hakbongni. The composition of body and glaze of these two areas were compared by principal component analysis using SPSS program. Hakbongni bodies have higher silica and flux materials but lower alumina and their glaze have higher silica, soda, iron oxide but lower alumina, calcia. Hakbongni punchong itself is divided into two groups. Their glaze is lime type. There are many remnant minerals, such as quartz, large feldspar mass with partially melted surrounding area, albite, biotite, and iron-oxide. From such a microstructure we can assume that preparation of raw material was rather crude and firing temperature quite low. Iron-painted material is identified as Mg/Fe/Al spinel by composition analysis and XRD pattern.

  • PDF

Evaluation of Stability and Deterioration Characteristics for the Rock-carved Standing Buddha Triad in Gyeongju Seoak-dong, Korea (경주 서악동 마애여래삼존입상의 손상특성 및 안정성 평가)

  • Lee, Chan Hee;Choie, Myoungju
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.137-150
    • /
    • 2021
  • The rock-carved standing Buddha triad in Seoak-dong is a large stone Buddha statue of the Unified Silla era (AD 676 to 935) in ancient Korea, built near the top of the southeastern side of mountain Seondosan in Gyeongju, is characterized by its locational importance, the powerful Amitabha and the gentle sculptural technique of the Bodhisattva. In particular, Amitabha Buddha in andesite rock slope with biotite granite pedestal and two Bodhisattva parallel made by alkali granites seems to express the dignity through the color and texture of the stones. In the Amitabha Buddha, deterioration characteristics are accelerating due to the combination of various joint systems, instability of the slopes and relaxation by the root pressure of plants occurring at the top. In addition, physical properties have deteriorated owing to the increase of discontinuous surfaces as joints, cracks and scalings, and the coverage of algae and lichen is also high. Therefore, deterioration degree in Buddha triad is accelerated due to the physical weathering characteristics from natural rock mass and various biological invasion.

Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis (민감도 분석을 기반으로 한 시료의 동결 특성에 미치는 영향인자 분석)

  • Go, Gyu-Hyun;Lee, Jangguen;Kim, Minseop
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.49-60
    • /
    • 2020
  • A fully coupled thermo-hydro-mechanical model is established to evaluate frost heave behaviour of saturated frost-susceptible soils. The method is based on mass conservation, energy conservation, and force equilibrium equations, which are fully coupled with each other. These equations consider various physical phenomena during one-dimensional soil freezing such as latent heat of phase change, thermal conductivity changes, pore water migration, and the accompanying mechanical deformation. Using the thermo-hydro-mechanical model, a sensitivity analysis study is conducted to examine the effects of the geotechnical parameters and external conditions on the amount of frost heave and frost heaving rate. According to the results of the sensitivity analysis, initial void ratio significantly affects each objective as an individual parameter, whereas soil particle thermal conductivity and temperature gradient affect frost heave behaviour to a greater degree when applied simultaneously. The factors considered in this study are the main factors affecting the frost heaving amount and rate, which may be used to determine the frostbite sensitivity of a new sample.