• 제목/요약/키워드: conservation of mass

검색결과 519건 처리시간 0.034초

핫엠보싱 충전공정에 관한 수치해석 (Numerical simulation of hot embossing filling)

  • 강태곤;권태헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

나노입자를 포함한 미세액적의 충돌에 대한 수치적 연구 (Numerical Study of Impact of Microdroplet Containing Nanoparticles)

  • 노상은;손기헌
    • 대한기계학회논문집B
    • /
    • 제36권6호
    • /
    • pp.609-617
    • /
    • 2012
  • 충돌, 퍼짐 및 수축을 포함한 나노입자 혼합 액적의 거동에 대한 수치모사를 수행하였다. 기체-액체 상경계면은 벽면에서의 접촉각 이력현상을 포함한 레벨셋 방법을 이용하여 해석하였다. 액적 내부의 나노입자 분포를 해석하기 위하여 물질의 열확산을 반영한 농도 방정식을 해석에 포함하였다. 수치해석 결과로부터 나노 입자의 분포는 온도의 불균일 분포에 크게 영향을 받는 것을 확인하였다. 나노입자의 농도 집중도에 의한 표면 장력 및 접촉각변화 효과에 대한 연구를 수행하였다.

만곡수로에서의 곡률반경 변화에 따른 흐름특성 (Flow Characteristics for the Variation of Radius of Curvature in Open Channel Bends)

  • 윤세의;이종태
    • 물과 미래
    • /
    • 제23권4호
    • /
    • pp.435-444
    • /
    • 1990
  • 만곡수로에서의 곡률반경에 대한 하폭비 변화에 따른 흐름특성을 단순화된 수치모형을 이용하여 분석하였다. 각 운동량 방정식과 힘의 평형원리로부터 각가 2차 흐름속도와 횡방향하상경사를 계산하였다. 깊이 방향으로 적분된 연속방정식과 흐름방향의 운동방정식을 양적 유한차분법으로부터 그 해를 구하였다. 곡률반경에 대한 하폭의 비를(Rc/B) 2.7, 5.4 및 8.1로 변화시키면 수치실험을 실행하여, 그 결과로부터 2차 흐름속도, 흐름방향유속, 최대유속의 이동경로, 편의각 및 질량이동유속에 관한 특성을 분석하였다.

  • PDF

Evaluation of Photosynthetic Ability in Two Representative Evergreen Broad-leaved Tree Species in Korea

  • Kim, Dong-Hak;Park, Yong Mok
    • 한국환경과학회지
    • /
    • 제26권10호
    • /
    • pp.1147-1153
    • /
    • 2017
  • To maintain a rich biological diversity is important to develop for biomaterial resources such as Korean evergreen broad-leaved tree species, the distribution of which is restricted to the southern part of Korean peninsula. We assessed photosynthetic characteristics of Quercus acuta and Castanopsis sieboldii, the representative evergreen broad-leaved trees in Korea, in order to establish a basis for conservation strategy related to distributional change in evergreen broad-leaved tree species according to climate change. Photosynthetic characteristics were evaluated in the sun and shade leaves of the two species. Sun leaves in both species revealed higher light compensation point and maximum photosynthetic rate compared to the shade leaves. In addition, photosynthetic rate was higher in Q. acuta than C. sieboldii, which was supported by a higher leaf nitrogen content and leaf mass per area. Water use efficiency was also higher in Q. acuta as compared to that in C. sieboldii. Similar photosynthetic rate, however, was shown in photosynthetic response to $CO_2$ concentration in the intercellular space. These results suggest that both species could respond differently to the changing environmental factors including climate change, suggesting the possibility of distributional changes resulting from a differential growth rate.

무-밸브 공기흡입 펄스데토네이션 엔진의 내부 유동과 성능 (Internal Flow Dynamics and Performance of Valveless Airbreathing Pulse Detonation Engine)

  • ;최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.367-370
    • /
    • 2006
  • This paper deals with the modeling and simulation of the internal flowfield in a valveless airbreathing pulse detonation engine (PDE) currently under experimental development at the U.S. Naval Postgraduate School. The system involves no valves in the airflow path, and the isolation between the inlet and combustor is achieved through the gasdynamics in an isolator. The analysis accommodates the full conservation equations in axisymmetric coordinates, and takes into account variable properties for ethylene/oxygen/air system. Chemical reaction schemes with a single progress variable are implemented to minimize the computational burden. Detailed flow evolution during a full cycle is explored and propulsive performance is calculated. Effect of initiator mass injection rate is examined and results indicate that the mass injection rate should be carefully selected to avoid the formation of recirculation zones in the initial cold flowfield. Flow evolution results demonstrate a successful detonation transmission from the initiator to the combustor. However, strong pressure disturbance may propagate upstream to the inlet nozzle, suggesting the current configuration could be further refined to provide more efficient isolation between the inlet and combustor.

  • PDF

용융 탄산염 연료전지의 분리판 내 연료 분배 해석 (A study for gas distribution in separators of molten carbonate fuel cell)

  • 박준호;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • A channel design which is closely related with the mass transport overpotential is one of the most important procedures to optimize the whole fuel cell performance. In this study, three dimensional results of a numerical study for gas distribution in channels of a molten carbonate fuel cell (MCFC) unit cell for a 1kW class stack was presented. The relationship between the fuel and air distribution in the anode and cathode channels of the unit cell and the electric performance was observed. A charge balance model in the electrodes and the electrolyte coupled with a heat transfer model and a fluid flow model in the porous electrodes and the channels was solved for the mass, momentum, energy, species and charge conservation. The electronic and ionic charge balance in the anode and cathode current feeders, the electrolyte and GDEs were solved for using Ohm's law, while Butler-Volmer charge transfer kinetics described the charge transfer current density. The material transport was described by the diffusion and convection equations and Navier-Stokes equations govern the flow in the open channel. It was assumed that heat is produced by the electrochemical reactions and joule heating due to the electrical currents.

  • PDF

Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng

  • Chen, Jin-Lian;Sun, Shi-Zhong;Miao, Cui-Ping;Wu, Kai;Chen, You-Wei;Xu, Li-Hua;Guan, Hui-Lin;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.315-324
    • /
    • 2016
  • Background: Biocontrol agents are regarded as promising and environmental friendly approaches as agrochemicals for phytodiseases that cause serious environmental and health problems. Trichoderma species have been widely used in suppression of soil-borne pathogens. In this study, an endophytic fungus, Trichoderma gamsii YIM PH30019, from healthy Panax notoginseng root was investigated for its biocontrol potential. Methods: In vitro detached healthy roots, and pot and field experiments were used to investigate the pathogenicity and biocontrol efficacy of T. gamsii YIM PH30019 to the host plant. The antagonistic mechanisms against test phytopathogens were analyzed using dual culture, scanning electron microscopy, and volatile organic compounds (VOCs). Tolerance to chemical fertilizers was also tested in a series of concentrations. Results: The results indicated that T. gamsii YIM PH30019 was nonpathogenic to the host, presented appreciable biocontrol efficacy, and could tolerate chemical fertilizer concentrations of up to 20%. T. gamsii YIM PH30019 displayed antagonistic activities against the pathogenic fungi of P. notoginseng via production of VOCs. On the basis of gas chromatography-mass spectrometry, VOCs were identified as dimethyl disulfide, dibenzofuran, methanethiol, ketones, etc., which are effective ingredients for antagonistic activity. T. gamsii YIM PH30019 was able to improve the seedlings' emergence and protect P. notoginseng plants from soil-borne disease in the continuous cropping field tests. Conclusion: The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.

심설(沈偰)묘 출토유물에서 발현되는 VOCs 및 냄새물질의 특성 평가 (Assessments of the VOCs and Smells Compounds Emitted from Properties Exhumed at Sim Seol Tomb)

  • 서용수;이영은
    • 보존과학회지
    • /
    • 제28권1호
    • /
    • pp.63-73
    • /
    • 2012
  • 본 연구에서는 (심설, 1570-1630)묘에서 출토된 유물로부터 발현되는 89종의 휘발성유기화합물 및 냄새물질을 열탈착기와 가스크로마토그래피-질량분석기로써 동정 및 정량분석 하였다. 주요물질로는 alpha-pinene 4,113ppbv, beta-pinene 2,510ppbv, limonene 2,424ppbv로 나타났으며, 그 외 tran-p-menth-2-ene, acetone, isolongifolene, isoborneol 순으로 검출되었다. 가장 높은 농도의 화합물 군은 terpenes 60.5%, 다음으로는 alcohols이 25.8%를 차지하고 있었다. 예상악취강도 역시 terpenes가 35.1%로 가장 높게 나타났으며, 다음으로 aldehydes 33.4%, alcohols 8.8%로 나타났다. 방향 및 방충, 항균 효과가 있는 것으로 알려진 terpenes는 내관으로 사용된 적송관(Pinus densiflora)으로부터 비롯된 것이며, aldehydes와 alcohols는 관 내부에 안치된 시신과 적송관 모두에서 비롯되는 것으로 평가되었다. 묘의 발굴 혹은 부장유물에서 발현되는 가스의 분석은 발굴과 보존처리 과정에 참여하는 작업자를 유해가스로부터 보호하는 안전대책을 수립하고, 회곽묘 내부의 미라와 부장유물의 보존효과 규명 및 효과적인 보존처리 방안수립에 대한 과학적인 기초자료를 제시할 수 있다.

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.232-232
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of 6.29 Gm3 per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.408-408
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of $6.29Gm^3$ per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF