• Title/Summary/Keyword: connection type

Search Result 1,444, Processing Time 0.029 seconds

An experimental study on th reinforced concrete filled tubular column to steel H-beam connections with outer diaphram by simplified connection type (철근콘크리트충전 강관기둥과 외부다이아프램을 보강한 H형강 보 접합부의 단순모형에 의한 실험연구)

  • 김인덕;최병극;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.587-596
    • /
    • 1997
  • This study is concerning the structural behavior of reinforced concrete filled tubular column to steel H-beam connections with outer diaphram by simplified connection type. The important parameters of this study are the cross-section shape of tubular column and the spacing of hoop (60mm, 30mm, 20mm) and the concrete filled or not. The experimental results are summarized for the strength and displacement of each specimen.

  • PDF

Seismic and progressive collapse assessment of SidePlate moment connection system

  • Faridmehr, Iman;Osman, Mohd Hanim;Tahir, Mahmood Bin Md.;Nejad, Ali Farokhi;Hodjati, Reza
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.35-54
    • /
    • 2015
  • The performance of a newly generated steel connection known as SidePlateTM moment connection for seismic loading and progressive collapse phenomenon has been investigated in this paper. The seismic evaluation portion of the study included a thorough study on of interstory drift angles and flexural strengths based on 2010 AISC Seismic Provisions while the acceptance criteria provided in UFC 4-023-03 guideline to resist progressive collapse must be satisfied by the rotational capacity of the connections. The results showed that the SidePlate moment connection was capable of attaining adequate rotational capacity and developing full inelastic capacity of the connecting beam. Moreover, the proposed connection demonstrated an exceptional performance for keeping away the plastic hinges from the connection and exceeding interstory drift angle of 0.06 rad with no fracture developments in beam flange groove-welded joints. The test results indicated that this type of connection had strength, stiffness and ductility to be categorized as a rigid, full-strength and ductile connection.

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

Running safety of high-speed train on deformed railway bridges with interlayer connection failure

  • Gou, Hongye;Liu, Chang;Xie, Rui;Bao, Yi;Zhao, Lixiang;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.261-274
    • /
    • 2021
  • In a railway bridge, the CRTS II slab ballastless track is subjected to interlayer connection failures, such as void under slab, mortar debonding, and fastener fracture. This study investigates the influences of interlayer connection failure on the safe operation of high-speed trains. First, a train-track-bridge coupled vibration model and a bridge-track deformation model are established to study the running safety of a train passing a deformed bridge with interlayer connection failure. For each type of the interlayer connection failure, the effects of the failure locations and ranges on the track irregularity are studied using the deformation model. Under additional bridge deformation, the effects of interlayer connection failure on the dynamic responses of the train are investigated by using the track irregularity as the excitation to the vibration model. Finally, parametric studies are conducted to determine the thresholds of additional bridge deformations considering interlayer connection failure. Results show that the interlayer connection failure significantly affects the running safety of high-speed train and must be considered in determining the safety thresholds of additional bridge deformation in the asset management of high-speed railway bridges.

Numerical Evaluation on Bending Stiffness of Nodal Connection Systems in the Single Layered Grid Considering Bolt Clearance (볼트 유격을 고려한 단층 그리드 노드 접합 시스템의 휨 강성에 대한 구조 해석적 평가)

  • Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.141-147
    • /
    • 2020
  • Single-layered grid space steel roof structure is an architectural system in which the structural ability of the nodal connection system greatly influences the stability of the entire structure. Many bolt connection systems have been suggested to enhance for better construct ability, but the structural behavior and maximum resistance of the connection system according to the size of bolt clearance play were difficult to identify. In particular, the identification of bending stiffness of the connection system is very important due to the characteristics of shell structures in which membrane stresses based on bending force effect significantly. To identify effective structural behavior and maximum bearing force, four representative nodal connection systems were selected and nonlinear numerical analysis were performed. The numerical analysis considering the size of the bolt clearance were performed to investigate structural behavior and maximum values of the bending force. In addition, the type of effective nodal connection system were evaluated. As a result, the connection system, which has two shear plane, represented high bending stiffness.

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

Mechanical Performance Evaluation of Rolling Thread Steel Rebar Connection with Taper type Coupler (변단면 전조 가공 철근이음 연결방법의 성능 평가)

  • Jeong, Jin-Hwan;Kim, In-Tae;Kim, Tae-Jin;Lee, Myung-Jin;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.40-51
    • /
    • 2015
  • In reinforced concrete structure, rebar connection method should be considered because of its structural role to resist the tensile stress and its structural load transmission with concrete in the concrete structure. Lapped splice and mechanical sleeve type connector have been traditionally used to connect rebar in the concrete structures. In this study, to examine the mechanical and failure behaviors of rebar bar connected by taper type coupler in the concrete member depending on connection type and condition, tensile tests of steel rebar with taper type coupler and flexible loading tests of concrete beams were conducted. Its tensile strength and flexible strength of the rebar connected by taper type coupler were compared and evaluated by mechanical behaviors of rebar. From this study, steel rebar connected by taper type coupler showed it has similar mechanical performance comparing with unconnected rebar, thus taper type coupler can be used in the rebar fabrication of reinforced concrete structure.

THE COMPARATIVE STUDY OF THERMAL INDUCTIVE EFFECT BETWEEN INTERNAL CONNECTION AND EXTERNAL CONNECTION IMPLANT IN ABUTMENT PREPARATION (구강내에서 임플랜트 지대주 형성 시 내부연결방식과 외부연결방식간의 열전달 효과 비교)

  • Huh, Jung-Bo;Ko, Sok-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.60-70
    • /
    • 2007
  • Statement of problem: The cement-type abutment would be needed for the reduction of its body in order to correct the axis and to assure occlusal clearance. In the case of intraoral preparation, there is a potential risk that generated heat could be transmitted into the bone-implant interface, where it can cause deterioration of tissues around the implant and failed osseointegration. Purpose: The purpose of this study was to assess the difference of the heat transmitting effect on external and internal connection implant types under various conditions. Material and method: For evaluating the effects of alternating temperature, the thermocoupling wires were attached on 3 areas of the implant fixture surface corresponding to the cervical, middle, and apex. The abutments were removed 1mm in depth horizontally with diamond burs and were polished for 30 seconds at low speed with silicone points using pressure as applied in routine clinical practice. Obtained data were analyzed using Mann-Whitney rank-sum test and Wilcoxon / Kruskal-Wallis Tests. Result: Increased temperature on bone-implant interface was evident without air-water spray coolant both at high speed reduction and low speed polishing (p<.05). But, the difference between connection types was not shown. Conclusion: The reduction procedure of abutment without using proper coolant leads to serious damage of oral tissues around the implant irrespective of external and internal connection type.

Test Results on the Type of Beam-to-Column Connection using SHN490 Steel (SHN490강종의 보-기둥 접합부 형태에 따른 실험적 연구)

  • Kim, So Yeong;Byeon, Sang Min;Lee, Ho;Shin, Kyung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.311-321
    • /
    • 2015
  • In this study, an experimental study to evaluate the seismic performance of beam-to-column connection for medium and low-rise building was conducted. Five connections using SHN490 steel were made with test variables such as flange welded or bolted, web welded or bolted. Specimen SHN-W-W is web welded and flange welded type. Specimen SHN-W-B is web welded and flange bolted type. Specimen SHN-B-W is web bolted and flange welded type. Specimen SHN-B-B is web bolted and flange bolted type. Specimen SHN-EP is a connection with the end plate to the beam ends. Cyclic loadings was applied at the tip of beam following KBC2009 load protocol. The load vs rotation curves for different connection are shown and final failure mode shapes are summarized. The connections are classified in terms of stiffness and strength as semi-rigid or rigid connection. Energy dissipation capacities for seismic performance evaluation were compared.

The Study on Local Composite Behavior of Connection Member between Steel Pipe Pile and Concrete Footing (강관 말뚝 기초 두부 연결부의 합성거동에 대한 연구)

  • You, Sung-Kun;Park, Jong-Myen;Park, Dae-Yong;Kim, Young-Ho;Kang, Won-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.288-296
    • /
    • 2003
  • Generally, application of steel pipe pile as deep foundation member needs special requirement for the connection method between steel pipe pile and concrete footing. Even though two types of connection method are suggested in the related specification, type B-method is provident. To investigate real structural behavior of type B connection, several load tests are done with carefully designed experimental system. The purpose of this experiment is mainly focused on the understanding of actual behavior which can be predicted by design theory. At this research stage, vertical and lateral loading test are done for three types of specimen to review stress concentration, formation and behavior of imaginary RC column in the footing and effect of non-slip device installed in the steel pipe pile. The load resistance mechanism in these specific connection method is predicted based on both experimental results. The three-dimensional finite element modeling is also done for the purpose of comparison between numerical and experimental result. With all the results gained from experiment the structural behavior of imaginary RC column in the design concept is confirmed. The role of non-slip device is very important and it affects the resistance capacity with help of composite action of concrete and steel pipe pile.